Skip to main content
Log in

QSAR study of necroptosis inhibitory activities (EC50) of [1,2,3] thiadiazole and thiophene derivatives using Bayesian regularized artificial neural network and calculated descriptors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A Bayesian regularized artificial neural network (BR-ANN) model was developed for modeling and accurate prediction of necroptosis inhibitory activities of [1,2,3] thiadiazole and thiophene derivatives as potent tumor necrosis factor-α-induced necroptosis inhibitors. The chemical structure of each compound was converted to 1,481 molecular descriptors by Dragon software. Among these, only seven descriptors relating the activity data to the molecular structures were selected as the significant ones. The best BR-ANN model was a three layer feed forward network with the 7-4-1 architecture. Prediction ability of the proposed model was evaluated by prediction of pEC50 of some compounds in the external (test) data set. The mean square error, mean absolute error, correlation coefficient (R), and mean relative error for the test set were 0.0214, 0.126, 0.978, and 2.475, respectively. The results obtained show the superior prediction ability of the proposed model in the prediction of necroptosis inhibitory activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afantitis A, Melagraki G, Sarimveis H, Koutentis PA, Markopoulos J (2006) A novel simple QSAR model for the prediction of anti-HIV activity using multiple linear regression analysis. Mol Divers 10:405–414

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal KK, Singh Y, Chandra P, Puri M (2005) Bayesian regularization in a neural network model to estimate lines of code using function points. J Comput Sci 1(4):505–509

    Article  Google Scholar 

  • Arab Chamjangali M (2009) Modeling of cytotoxicity data (CC50) of anti-HIV 1-[5-chlorophenyl) sulfonyl]-1H-pyrrole derivatives using calculated molecular descriptors and Levenberg-Marquardt artificial neural network. J Chem Biol Drug Des 73:456–465

    Article  CAS  Google Scholar 

  • Basak SC, Balaban AT, Grunwald GD, Gute BD (2000) Topological indices: their nature and mutual relatedness. J Chem Inf Comput Sci 4:891–898

    Google Scholar 

  • Buren FR (1999) Robust QSAR models using Bayesian-regularized neural networks. J Med Chem 42:3183–3187

    Article  Google Scholar 

  • Caballero J, Fernandez M (2006) Linear and nonlinear modeling of antifungal activity of some heterocyclic ring derivatives using multiple linear regression and Bayesian-regularized neural networks. J Mol Model 12:168–181

    Article  PubMed  CAS  Google Scholar 

  • Cherqaoui D, Villemin D (1994) Use of a neural network to determine boiling point of alkanes. J Chem Soc Faraday Trans 90:97–102

    Article  CAS  Google Scholar 

  • Fernandez M, Caballero J (2006a) Bayesian-regularized genetic neural networks applied to the modeling of non-peptide antagonists for the human luteinizing hormone-releasing hormone receptor. J Mol Graph Model 25:409–421

    Article  Google Scholar 

  • Fernandez M, Caballero J (2006b) Modelling of activity of cyclic urea HIV-1 protease inhibitors using regularized-artificial neural network. J Bioorg Med Chem 14:280–294

    Article  CAS  Google Scholar 

  • Gevrey M, Dimopoulos I, Lek S (2003) Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol Model 160:249–264

    Article  Google Scholar 

  • Goodarzi M, Deshpande S, Murugesan V, Katti SB, Prabhakar YS (2009) Is feature selection essential for ANN modelling. QSAR Comb Sci 28:1487–1499

    Article  CAS  Google Scholar 

  • Gosav S, Praisler M, Dorohoi DO, Popa G (2006) Structure–activity correlation for illicit amphetamines using ANN and constitutional descriptors. J Talanta 70:922–928

    Article  CAS  Google Scholar 

  • Guha R (2005) Methods to improve the reliability, validity and interpretability of QSAR models. PhD Thesis, Pennsylvania State University

  • Hajan MT, Menhaj MB (1994) Training feed forward networks with the Marquardt algorithm. IEE Trans Neural Netw 5:989–993

    Article  Google Scholar 

  • Hemmer MC, Steinhauer V, Gasteiger J (1999) The prediction of the 3D structure of organic molecules from their infrared spectra. J Vib Spectrosc 19:151–164

    Article  CAS  Google Scholar 

  • Jagtap PG, Degterev A, Choi S, Keys H, Yuang J, Cuny GD (2007) Structure–activity relationship study of tricyclic necroptosis inhibitors. J Med Chem 50(8):1886–1895

    Article  PubMed  CAS  Google Scholar 

  • Jalali-Heravi M, Asadollahi-Baboli M (2008) QSAR analysis of platelet-derived growth inhibitors using GA-ANN and shuffling cross validation. J QSAR Comb Sci 6:750–757

    Article  Google Scholar 

  • Jalali-Heravi M, Mani-Varnosfaderani A (2009) QSAR modelling of 1-(3,3-diphenylpropyl)-piperidinyl amides as CCR5 modulators using multivariate adaptive regression spline and Bayesian regularization genetic neural networks. QSAR Comb Sci 9:946–958

    Article  Google Scholar 

  • Jalali-Heravi M, Parastar F (2000) Use of artificial neural network in a QSAR study of anti-HIV activity for a large group of HEPT derivatives. J Chem Inf Comput Sci 40:147–154

    Article  PubMed  CAS  Google Scholar 

  • Jalali-Heravi M, Asadollahi-Baboli M, Shahbazikhah P (2008) QSAR study of herparanase inhibitors activity using artificial neural networks and Levenberg-Marquardt algorithm. Eur Med Chem 43:548–556

    Article  CAS  Google Scholar 

  • Kanduc D, Mittelman A, Serpico R, Sinigaglia E, Sinha AA, Natale C, Santacroce R, Di Corcia MG, Lucchese A, Dini L, Pani P, Santacroce S, Simone S, Bucci R, Farber E (2002) Cell death: apoptosis versus necrosis (review). Int J Oncol 21(1):165–170

    PubMed  CAS  Google Scholar 

  • Kermani BG, White MW, Nagle HT (1994) A new method in acquiring a better generalization in neural networks. In: Proceeding of the 16th annual international conference of the IEEE engineering in medicinal and biology society, Baltimore, MD, USA

  • Kermani BG, Schiffman SS, Troy Nagle H (2005) Performance of the Levenberg-Marquardt neural network training method in electronic nose applications. Sens Actuators B 110:13–22

    Article  Google Scholar 

  • MacKay DJC (1992) Bayesian interpolation. Neural Comput 4:415–447

    Article  Google Scholar 

  • Roy K, Leonardo JT (2005) QSAR analysis of 3-(4-benzylpiperidin-1-yl)-N-phenylpropylamine derivatives as potent CCR5 antagonists. J Chem Inf Model 45:1352–1368

    Article  PubMed  CAS  Google Scholar 

  • Schuur JH, Selzer P, Gasteiger J (1996) The coding of the three dimensional structure of molecules by molecular transform and its application to structure–spectra correlation and studies of biological activity. J Chem Inf Comput Sci 36:334–344

    Article  CAS  Google Scholar 

  • Stefan P, Niculescu P (2003) Artificial neural networks and genetic algorithm in QSAR. Mol Struct 622:71–83

    Google Scholar 

  • Teng X, Degterev A, Jagtap P, Xing X, Choi S, Denu R, Yuang J, Cuny GD (2005) Structure–activity relationship study of novel necroptosis inhibitors. Bioorg Med Chem Lett 15:5039–5044

    Article  PubMed  CAS  Google Scholar 

  • Teng X, Keys H, Jeevanandam A, Porco JA, Degterev A, Yuang J, Cuny GD (2007) Structure–activity relationship study of [1,2,3] thiadiazole necroptosis inhibitors. Bioorg Med Chem Lett 17:6836–6840

    Article  PubMed  CAS  Google Scholar 

  • Wang XG, Tang Z, Tamura H, Ishii M (2004a) A modified error function for the back propagation algorithm. Neurocomputing 57:477–484

    Article  Google Scholar 

  • Wang XG, Tang Z, Tamura H, Ishii M, Sun W (2004b) An improved back propagation algorithm to avoid the local minima problem. Neurocomputing 56:455–460

    Article  Google Scholar 

  • Wang K, Li J, Degterev A, Hsu E, Yuang J, Yuang C (2007) Structure–activity relationship study of novel necroptosis inhibitors, Necrostatin-5. Bioorg Med Chem Lett 17:1455–1465

    Article  PubMed  CAS  Google Scholar 

  • Weekes D, Fogel GB (2003) Evolutionary optimization, back propagation and data preparation issues in QSAR modeling of HIV inhibition by HEPT derivatives. Biosystems 72:149–158

    Article  PubMed  CAS  Google Scholar 

  • Yao X, Liu H, Zhang R, Liu M, Hu Z, Panaye A, Doucet JP, Fan B (2005) QSAR and classification study of 1,4 dihydropyridine calcium channel antagonists based on least square support vector machines. Mol Pharm 2:348–358

    Article  PubMed  CAS  Google Scholar 

  • Yasri A, Hartsough D (2001) Toward an optimal procedure for variable selection and QSAR model building. J Chem Inf Comput Sci 41:1218–1227

    Article  PubMed  CAS  Google Scholar 

  • Zarei K, Atabati M (2009) QSAR study of anti-HIV activities against HIV-1 and some of their mutant strain for a group of HEPT derivatives. J Chin Chem Sci 56:206–213

    CAS  Google Scholar 

  • Zheng W, Degterev A, Hsu E, Yuang J, Yuang C (2008) Structure–activity relationship study of novel necroptosis inhibitors, Necrostatin-7. Bioorg Med Chem Lett 18:4932–4935

    Article  PubMed  CAS  Google Scholar 

  • Zupan JJ, Gasteiger J (1993) Neural networks for chemists an introduction. VCH Publishers, Weinheim

    Google Scholar 

  • Zweiri YH, Whidborne JF, Senviratne LD (2003) A three-term back propagation algorithm. Neurocomputing 50:305–318

    Article  Google Scholar 

Download references

Acknowledgment

The authors are thankful to the Shahrood University of Technology Research Council for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arab Chamjangali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamjangali, M.A., Ashrafi, M. QSAR study of necroptosis inhibitory activities (EC50) of [1,2,3] thiadiazole and thiophene derivatives using Bayesian regularized artificial neural network and calculated descriptors. Med Chem Res 22, 392–400 (2013). https://doi.org/10.1007/s00044-012-0027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-0027-9

Keywords

Navigation