Skip to main content
Log in

Critical Partitions and Nodal Deficiency of Billiard Eigenfunctions

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

The paper addresses the nodal count (i.e., the number of nodal domains) for eigenfunctions of Schrödinger operators with Dirichlet boundary conditions in bounded domains. The classical Sturm theorem states that in dimension one, the nodal and eigenfunction counts coincide: the nth eigenfunction partitions the interval into n nodal domains. The Courant Nodal Theorem claims that in any dimension, the number of nodal domains ν n of the nth eigenfunction cannot exceed n. However, it follows from an asymptotically stronger upper bound by Pleijel that in dimensions higher than 1 the equality can hold for only finitely many eigenfunctions. Thus, in most cases a “nodal deficiency” d n  = nν n arises. One can say that the nature of the nodal deficiency has not been understood. It was suggested in recent years that, rather than starting with eigenfunctions, one can look at partitions of the domain into ν sub-domains, asking which partitions can correspond to eigenfunctions, and what would be the corresponding deficiency. To this end one defines an “energy” of a partition, for example, the maximum of the ground state energies of the sub-domains. One notices that if a partition does correspond to an eigenfunction, then the ground state energies of all the nodal domains are the same, i.e., it is an equipartition. It was shown in a recent paper by Helffer, Hoffmann-Ostenhof and Terracini that (under some natural conditions) partitions minimizing the energy functional correspond to the “Courant sharp” eigenfunctions, i.e. to those with zero nodal deficiency. In this paper it is shown that it is beneficial to restrict the domain of the functional to the equipartition, where it becomes smooth. Then, under some genericity conditions, the nodal partitions correspond exactly to the critical points of the functional. Moreover, the nodal deficiency turns out to be equal to the Morse index at the corresponding critical point. This explains, in particular, why the minimal partitions must be Courant sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abraham. Lectures of Smale on differential topology. In: Lecture Notes. Columbia Univ., New York (1962).

  2. J. H. Albert. Nodal and critical sets for eigenfunctions of elliptic operators. In: Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971). Am. Math. Soc., Providence (1973), pp. 71–78.

  3. Albert J.H.: Generic properties of eigenfunctions of elliptic partial differential operators. Transactions of the American Mathematical Society 238, 341–354 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atiyah M.F.: K-Theory. Benjamin, New York (1967)

    Google Scholar 

  5. Band R., Berkolaiko G., Raz H., Smilansky U.: Critical partitions and nodal domains on quantum graphs. Communications in Mathematical Physics 311, 815–838 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berkolaiko G., Raz H., Smilansky U.: Stability of nodal structures in graph eigenfunctions and its relation to the nodal domain count. Journal of Physics A: Mathematical and Theoretical 45, 165203 (2012)

    Article  MathSciNet  Google Scholar 

  7. G. Berkolaiko. Nodal count of graph eigenfunctions via magnetic perturbation. Preprint. arXiv:1110.5373.

  8. Blum G., Gnutzmann S., Smilansky U.: Nodal domains statistics: A criterion for quantum chaos. Physical Review Letters, (11) 88, 114101 (2002)

    Article  Google Scholar 

  9. N. Bourbaki, \’Eléments de mathématique. Fasc. XXXVI. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 8 à à 15). Actualités Scientifiques et Industrielles, Vol. 1347. Hermann, Paris (1971)

  10. J. Brüning, D. Klawonn, and C. Puhle. Comment on: Resolving isospectral ‘drums’ by counting nodal domains. [J. Phys. A 38 (2005), no. 41, 8921–8933] by S. Gnutzmann, U. Smilansky and N. Sondergaard. Journal of Physics A, (50)40 (2007), 15143–15147.

    Google Scholar 

  11. E. F. F. Chladni, Die Akustik. Brietkopf und Härtel, Leipzig 1802. French translation Traité d’Acoustique, Paris, Courcier 1809.

  12. Y. Colin de Verdière, Magnetic interpretation of the nodal defect on graphs. Preprint. arXiv:1201.1110.

  13. Conti M., Terracini S., Verzini G.: On a class of optimal partition problems related to the Fučí k spectrum and to the monotonicity formulae. Calculus of Variations and Partial Differential Equations, (1) 22, 45–72 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Courant and D. Hilbert. Methods of Mathematical Physics, Vol. I. Interscience Publishers, Inc., New York (1953).

  15. H. Donnelly and C. Fefferman. Nodal sets of eigenfunctions: Riemannian manifolds with boundary. In: Analysis, et cetera. Academic Press, Boston (1990), pp. 251–262.

  16. H. Donnelly and C. Fefferman. Growth and geometry of eigenfunctions of the Laplacian. In: Analysis and Partial Differential Equations. Lecture Notes in Pure and Appl. Math., Vol. 122. Dekker, New York (1990), pp. 635–655.

  17. Donnelly H., Fefferman C.: Nodal sets for eigenfunctions of the Laplacian on surfaces. Journal of the American Mathematical Society, (2) 3, 333–353 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Donnelly H., Fefferman C.: Nodal domains and growth of harmonic functions on noncompact manifolds. Journal of Geometric Analysis, (1) 2(, 79–93), 2, 79–93 (1992)

    MathSciNet  Google Scholar 

  19. Donnelly H., Fefferman C.: Nodal sets of eigenfunctions on Riemannian manifolds. Inventiones Mathematicae, (1) 93, 161–183 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Friedlander L.: On the second eigenvalue of the Dirichlet Laplacian. Israel Journal of Mathematics, (1) 79, 23–32 (1992)

    Article  MATH  Google Scholar 

  21. Fujiwara D.: A remark on the Hadamard variational formula. II. Proceedings of the Japan Academy, Series A, Mathematical Sciences, (7) 57, 337–341 (1981)

    Article  MATH  Google Scholar 

  22. Fujiwara D., Ozawa S.: The Hadamard variational formula for the Green functions of some normal elliptic boundary value problems. Proceedings of the Japan Academy, Series A, Mathematical Sciences, (8) 54, 215–220 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Galileo Galilei. Dialogues Concerning Two New Sciences (English translation). The MacMillan Company, Chicago (1939).

  24. Garabedian P.R.: Partial Differential Equations. 2nd edn. Chelsea Publishing Co, New York (1986)

    Google Scholar 

  25. Garabedian P.R., Schiffer M.: Convexity of domain functionals. Journal d’Analyse Mathematique 2, 281–368 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gnutzmann S., Smilansky U., Sondergaard N.: Resolving isospectral ‘drums’ by counting nodal domains. Journal of Physics A, (41) 38, 8921–8933 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Grinfeld. Hadamards formula inside and out. Journal of Optimization Theory and Applications, 146 (2010).

  28. J. Hadamard. Mémoire sur le problème danalyse relatif à à léquilibre des plaques elastiques encastrées. Mem. Acad. Sci. Inst. de France, 1908.

  29. O. H. Hald and J. R. McLaughlin. Inverse nodal problems: finding the potential from nodal lines. Memoirs of the American Mathematical Society, (572)119 (1996).

    Google Scholar 

  30. Helffer B., Hoffmann-Ostenhof T., Terracini S.: Nodal domains and spectral minimal partitions. Annales de l’Institut Henri Poincaré (C) Analyse Non Linéaire, (1) 26, 101–138 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. B. Helffer, Domaines nodaux et partitions spectrales minimales (d’après B. Helffer, T. Hoffmann-Ostenhof et S. Terracini). In: Séminaire: Équations aux Dérivées Partielles. 2006–2007, Sémin. Équ. Dériv. Partielles, Exp. No. VIII, 23. École Polytech., Palaiseau (2007).

  32. H. Hezari, S. Zelditch. C spectral rigidity of the ellipse. Preprint. arXiv:1007.1741.

  33. D. Hilbert. Grundzüge einer allgemainen Theorie der linearen Integralgleichungen. Leipzig, 1912.

  34. Husemoller D.: Fibre Bundles. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  35. Ivanov L., Kotko L., Kreĭn S.: Boundary value problems in variable domains. Differencial’nye Uravnenija i ikh Primenenie, Vilnus 19, 1–161 (1977)

    Google Scholar 

  36. P. D. Karageorge and U. Smilansky. Counting nodal domains on surfaces of revolution. Journal of Physics A, (20)41 (2008), 205102, 26.

    Google Scholar 

  37. D. Klawonn. Inverse nodal problems. Journal of Physics A, (17)42 (2009), 175209, 11.

  38. Kozlov V.: On the Hadamard formula for nonsmooth domains. Journal of Differential Equations, (2) 230, 532–555 (2006)

    Article  MATH  Google Scholar 

  39. Lang S.: Introduction to differentiable manifolds. In: Universitext. Springer, New York (2002)

    Google Scholar 

  40. J.-L. Lions and E. Magenes. Non-homogeneous Boundary Value Problems and Applications, Vol. I. Springer, New York (1972). Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181.

  41. MacCurdy E.: Notebooks of Leonardo da Vinci. Jonathan Cape, London (1938)

    Google Scholar 

  42. McLaughlin J.R.: Good vibrations. American Scientist, (4) 86, 342–349 (1998)

    Google Scholar 

  43. Micheletti A.M.: Perturbazione dello spettro di un operatore ellittico di tipo variazionale, in relazione ad una variazione del campo. Annali di Matematica Pura ed Applicata (4) 97, 267–281 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  44. Micheletti A.M.: Perturbazione dello spettro dell’operatore di Laplace, in relazione ad una variazione del campo. Annali della Scuola Normale Superiore di Pisa (3), 26, 151–169 (1972)

    MathSciNet  MATH  Google Scholar 

  45. N. Nadirashvili, D. Tot, and D. Yakobson. Geometric properties of eigenfunctions. Uspekhi Mat. Nauk, (6(342))56 (2001), 67–88.

    Google Scholar 

  46. Oxford Dictionary of Scientists. Oxford Univ. Press, New York (1999).

  47. Peetre J.: On Hadamard’s variational formula. Journal of Differential Equations, (3) 36, 335–346 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  48. Pleijel Å.: Remarks on Courant’s nodal line theorem. Communications on Pure and Applied Mathematics 9, 543–550 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rayleigh J.: The Theory of Sound. 2nd edn. Dover Publications, New York (1945)

    MATH  Google Scholar 

  50. Uhlenbeck K.: Generic properties of eigenfunctions. The American Journal Of Mathematics, (4) 98, 1059–1078 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  51. M. G. Zaĭdenberg, S. G. Kreĭn, P. A. Kučment, and A. A. Pankov. Banach bundles and linear operators. Uspehi Mat. Nauk, (5(185))30 (1975), 101–157. English translation: Russian Math. Surveys (5) 30 (1975), 115–175.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kuchment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkolaiko, G., Kuchment, P. & Smilansky, U. Critical Partitions and Nodal Deficiency of Billiard Eigenfunctions. Geom. Funct. Anal. 22, 1517–1540 (2012). https://doi.org/10.1007/s00039-012-0199-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-012-0199-y

Keywords

Navigation