Skip to main content
Log in

Local Structure of The Set of Steady-State Solutions to The 2d Incompressible Euler Equations

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

It is well known that the incompressible Euler equations can be formulated in a very geometric language. The geometric structures provide very valuable insights into the properties of the solutions. Analogies with the finite-dimensional model of geodesics on a Lie group with left-invariant metric can be very instructive, but it is often difficult to prove analogues of finite-dimensional results in the infinite-dimensional setting of Euler’s equations. In this paper we establish a result in this direction in the simple case of steady-state solutions in two dimensions, under some non-degeneracy assumptions. In particular, we establish, in a non-degenerate situation, a local one-to-one correspondence between steady-states and co-adjoint orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold V.I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16, 316–361 (1966)

    Article  Google Scholar 

  2. V.I. Arnold, B. Khesin, Topological Methods in Hydrodynamics, Applied Mathematical Sciences 125, Springer–Verlag (1998).

  3. Ebin D.G., Marsden J.E.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. of Math. (2) 92, 102–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ebin D.G., Misiołek G., Preston S.C.: Singularities of the exponential map on the volume-preserving diffeomorphism group. Geom. Funct. Anal. 16(4), 850–868 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften 153, Springer–Verlag (1969).

  6. Hamilton R.S.: The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.) 7(1), 65–222 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. A.A. Kirillov, Lectures on the Orbit Method, Graduate Studies in Mathematics 64, American Mathematical Society (2004).

  8. N.V. Krylov, Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Graduate Studies in Mathematics 12, American Mathematical Society (1996).

  9. de la Llave R., Obaya R.: Regularity of the composition operator in spaces of Hölder functions. Discrete Contin. Dynam. Systems 5(1), 157–184 (1999)

    MathSciNet  MATH  Google Scholar 

  10. C. Marchioro, M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, Applied Mathematical Sciences 96, Springer–Verlag (1994).

  11. Marsden J.E., Weinstein A.: Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids. Order in Chaos (Los Alamos, N.M., (1982). Phys. D 7(1–3), 305–323 (1983)

    MathSciNet  Google Scholar 

  12. Miller J., Weichman P., Cross M.C.: Statistical mechanics, Euler’s equation, and Jupiter’s Red Spot. Phys. Rev. A 45, 2328–2359 (1992)

    Article  Google Scholar 

  13. Misiołlek G., Preston S.C.: Fredholm properties of Riemannian exponential maps on diffeomorphism groups,. Invent. Math 179(1), 191–227 (2010)

    Article  MathSciNet  Google Scholar 

  14. Moser J.: A new technique for the construction of solutions of nonlinear differential equations. Proc. Nat. Acad. Sci. USA 47, 1824–1831 (1961)

    Article  MATH  Google Scholar 

  15. Nash J.: The imbedding problem for Riemannian manifolds. Ann. of Math. (2) 63, 20–63 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  16. Preston S.C.: The WKB method for conjugate points in the volumorphism group. Indiana Univ. Math. J. 57(7), 3303–3327 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ratiu T.S., Tudoran R., Sbano L., Sousa Dias E., Terra G.: A Crash Course in Geometric Mechanics, Notes of the Courses Given by Ratiu, London Math. Soc. Lecture Note Ser. 306. Cambridge Univ. Press, Cambridge (2005)

    Google Scholar 

  18. Robert R.: A maximum–entropy principle for two–dimensional perfect fluid dynamics. J. Statist. Phys. 65(3–4), 531–553 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sergeraert F.: Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications. Ann. Sci. École Norm. Sup. (4) 5, 599–660 (1972)

    MathSciNet  MATH  Google Scholar 

  20. Shnirelman A.I.: Lattice theory and flows of ideal incompressible fluid. Russian J. Math. Phys. 1(1), 105–114 (1993)

    MathSciNet  MATH  Google Scholar 

  21. Turkington B.: Statistical equilibrium measures and coherent states in twodimensional turbulence. Comm. Pure Appl. Math. 52(7), 781–809 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Choffrut.

Additional information

V.Š. supported in part by NSF grant DMS 0800908.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choffrut, A., Šverák, V. Local Structure of The Set of Steady-State Solutions to The 2d Incompressible Euler Equations. Geom. Funct. Anal. 22, 136–201 (2012). https://doi.org/10.1007/s00039-012-0149-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-012-0149-8

Keywords and phrases

2010 Mathematics Subject Classification

Navigation