Skip to main content
Log in

Diophantine Approximations on Fractals

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We exploit dynamical properties of diagonal actions to derive results in Diophantine approximations. In particular, we prove that the continued fraction expansion of almost any point on the middle third Cantor set (with respect to the natural measure) contains all finite patterns (hence is well approximable). Similarly, we show that for a variety of fractals in [0, 1]2, possessing some symmetry, almost any point is not Dirichlet improvable (hence is well approximable) and has property C (after Cassels). We then settle by similar methods a conjecture of M. Boshernitzan saying that there are no irrational numbers x in the unit interval such that the continued fraction expansions of \({\{nx\,{\rm mod}\,1\}_{n \in {\mathbb N}}}\) are uniformly eventually bounded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Adler, B. Weiss, Similarity of automorphisms of the torus, Memoirs of the American Mathematical Society 98, American Mathematical Society, Providence, RI (1970).

  2. M. Aka, U. Shapira, On the continued fraction expansion of quadratic irrationals, preprint.

  3. Brin M., Katok A.: On local entropy, Geometric Dynamics (Rio de Janeiro, 1981). Springer Lecture Notes in Math. 1007, 30–38 (1983)

    Article  MathSciNet  Google Scholar 

  4. Yitwah Cheung, Hausdorff dimension of the set of singular pairs, Ann of Math., to appear.

  5. Dani S.G.: Divergent trajectories of flows on homogeneous spaces and Diophantine approximation. J. Reine Angew. Math. 359, 55–89 (1985)

    MathSciNet  MATH  Google Scholar 

  6. Davenport H: Indefinite binary quadratic forms, and Euclid’s algorithm in real quadratic fields. Proc. London Math. Soc. (2) 53, 65–82 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  7. Davenport H., Schmidt W.M.: Dirichlet’s theorem on Diophantine approximation II. Acta Arith. 16, 413–424 (1969/70)

    MathSciNet  Google Scholar 

  8. H. Davenport, W.M. Schmidt, Dirichlet’s theorem on Diophantine approximation, in “Symposia Mathematica IV (INDAM, Rome, 1968/69), Academic Press, London (1970), 113–132.

  9. Einsiedler M., Katok A.: Rigidity of measures—the high entropy case and non-commuting foliations. Israel J. Math. 148, 169–238 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Einsiedler M., Katok A., Lindenstrauss E.: Invariant measures and the set of exceptions to Littlewood’s conjecture. Ann. of Math. (2) 164(2), 513–560 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Einsiedler M., Kleinbock D.: Measure rigidity and p-adic Littlewood-type problems. Compos. Math. 143(3), 689–702 (2007)

    MathSciNet  MATH  Google Scholar 

  12. M. Einsiedler, E. Lindenstrauss, Diagonal actions on locally homogeneous spaces, in “Homogeneous Flows, Moduli Spaces and Arithmetic”, Clay Math. Proc. 10, Amer. Math. Soc., Providence, RI (2010), 155–241.

  13. M. Einsiedler, T. Ward, Ergodic Theory: With a View Towards Number Theory, Graduate Texts in Mathematics 259, Springer-Verlag London Ltd. (2011).

  14. Fishman L.: Schmidt’s game on fractals. Israel J. Math. 171, 77–92 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. I.J. Good, Corrigenda: “The fractional dimensional theory of continued fractions” [Proc. Cambridge Philos. Soc. 37 (1941), 199–228], Math. Proc. Cambridge Philos. Soc. 105:3 (1989), 607.

  16. D. Kleinbock, Diophantine properties of measures and homogeneous dynamics, Pure Appl. Math. Q. 4:1 part 2 (2008), 81–97

  17. D. Kleinbock, E. Lindenstrauss, B. Weiss, On fractal measures and Diophantine approximation, Selecta Math. (N.S.) 10:4 (2004), 479–523.

    Google Scholar 

  18. Kleinbock D.Y., Margulis G.A.: Flows on homogeneous spaces and Diophantine approximation on manifolds. Ann. of Math. (2) 148(1), 339–360 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kleinbock D., Weiss B.: Badly approximable vectors on fractals. Israel J. Math. 149, 137–170 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kleinbock D., Weiss B.: Dirichlet’s theorem on Diophantine approximation and homogeneous flows. J. Mod. Dyn. 2(1), 43–62 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Kristensen S., Thorn R., Velani S.: Diophantine approximation and badly approximable sets. Adv. Math. 203(1), 132–169 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Levesley J., Salp C., Velani S.L.: On a problem of K. Mahler: Diophantine approximation and Cantor sets. Math. Ann. 338(1), 97–1187 (2007)

    MathSciNet  MATH  Google Scholar 

  23. E. Lindenstrauss, Adelic dynamics and arithmetic quantum unique ergodicity, in “Current Developments in Mathematics 2004”, Int. Press, Somerville, MA (2006), 111–139.

  24. Lindenstrauss E.: Invariant measures and arithmetic quantum unique ergodicity. Ann. of Math. (2) 163(1), 165–219 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. de Mathan B., Teulié O.: Problèmes diophantiens simultanés. Monatsh. Math. 143(3), 229–245 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pollington A., Velani S.L.: Metric Diophantine approximation and “absolutely friendly” measures. Selecta Math. (N.S.) 11(2), 297–307 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schmidt W.M.: On badly approximable numbers and certain games. Trans. Amer. Math. Soc. 123, 178–199 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  28. Series C.: The modular surface and continued fractions. J. London Math. Soc. (2) 31(1), 69–80 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shah N.: Equidistribution of expanding translates of curves and Dirichlet’s theorem on Diophantine approximation. Inventiones Math. 177(3), 509–532 (2009)

    Article  MATH  Google Scholar 

  30. Shapira U.: On a generalization of Littlewood’s conjecture. Journal of Modern Dynamics 3(3), 457–477 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shapira U.: A solution to a problem of Cassels and Diophantine properties of cubic numbers. Ann. of Math. 173(1), 543–557 (2011)

    Article  MathSciNet  Google Scholar 

  32. R. Shi, Equidistribution of expanding measures with local maximal dimension and diophantine approximation, preprint; available on arXiv at http://arxiv.org/abs/0905.1152.

  33. A.J. van der Poorten, Notes on continued fractions and recurrence sequences, in “Number Theory and Cryptography (Sydney, 1989), London Math. Soc. Lecture Note Ser. 154, Cambridge Univ. Press, Cambridge (1990), 86–97.

  34. B. Weiss, Almost no points on a Cantor set are very well approximable, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457: 2008 (2001),949–952.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri Shapira.

Additional information

Part of the third author’s PhD thesis at the Hebrew University of Jerusalem. The partial support of ISF grant number 1157/08, as well as the Binational Science Foundation grant 2008454 is acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einsiedler, M., Fishman, L. & Shapira, U. Diophantine Approximations on Fractals. Geom. Funct. Anal. 21, 14–35 (2011). https://doi.org/10.1007/s00039-011-0111-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-011-0111-1

Keywords and phrases

2010 Mathematics Subject Classification

Navigation