Skip to main content

Advertisement

Log in

Stress transgenerationally programs metabolic pathways linked to altered mental health

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Stress is among the primary causes of mental health disorders, which are the most common reason for disability worldwide. The ubiquity of these disorders, and the costs associated with them, lends a sense of urgency to the efforts to improve prediction and prevention. Down-stream metabolic changes are highly feasible and accessible indicators of pathophysiological processes underlying mental health disorders. Here, we show that remote and cumulative ancestral stress programs central metabolic pathways linked to mental health disorders. The studies used a rat model consisting of a multigenerational stress lineage (the great-great-grandmother and each subsequent generation experienced stress during pregnancy) and a transgenerational stress lineage (only the great-great-grandmother was stressed during pregnancy). Urine samples were collected from adult male F4 offspring and analyzed using 1H NMR spectroscopy. The results of variable importance analysis based on random variable combination were used for unsupervised multivariate principal component analysis and hierarchical clustering analysis, as well as metabolite set enrichment analysis (MSEA) and pathway analysis. We identified distinct metabolic profiles associated with the multigenerational and transgenerational stress phenotype, with consistent upregulation of hippurate and downregulation of tyrosine, threonine, and histamine. MSEA and pathway analysis showed that these metabolites are involved in catecholamine biosynthesis, immune responses, and microbial host interactions. The identification of metabolic signatures linked to ancestral programming assists in the discovery of gene targets for future studies of epigenetic regulation in pathogenic processes. Ultimately, this research can lead to biomarker discovery for better prediction and prevention of mental health disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kessler RC, Aguilar-Gaxiola S, Alonso J, Chatterji S, Lee S, Ormel J, Ustun TB, Wang PS (2009) The golobal burden of mental disorders: an update from the WHO World Mental Health (WMH) Surveys. Epidemiol Psichiatr Soc 18(1):11

    Article  Google Scholar 

  2. Hammen C (2005) Stress and depression. Annu Rev Clin Psychol 1:293–319. doi:10.1146/annurev.clinpsy.1.102803.143938

    Article  PubMed  Google Scholar 

  3. McEwen BS, Eiland L, Hunter RG, Miller MM (2012) Stress and anxiety: structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology 62(1):3–12. doi:10.1016/j.neuropharm.2011.07.014

    Article  CAS  PubMed  Google Scholar 

  4. Charil A, Laplante DP, Vaillancourt C, King S (2010) Prenatal stress and brain development. Brain Res Rev 65(1):56–79. doi:10.1016/j.brainresrev.2010.06.002

    Article  PubMed  Google Scholar 

  5. Crews D, Gillette R, Scarpino SV, Manikkam M, Savenkova MI, Skinner MK (2012) Epigenetic transgenerational inheritance of altered stress responses. PNAS 109(23):9143–9148. doi:10.1073/pnas.1118514109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zucchi FC, Yao Y, Ward ID, Ilnytskyy Y, Olson DM, Benzies K, Kovalchuk I, Kovalchuk O, Metz GA (2013) Maternal stress induces epigenetic signatures of psychiatric and neurological diseases in the offspring. PLoS One 8(2):e56967. doi:10.1371/journal.pone.0056967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lumey LH, Stein AD, Susser E (2011) Prenatal famine and adult health. Annu Rev Publ Health 32:237–262. doi:10.1146/annurev-publhealth-031210-101230

    Article  CAS  Google Scholar 

  8. Cao X, Laplante DP, Brunet A, Ciampi A, King S (2014) Prenatal maternal stress affects motor function in 5(1/2)-year-old children: project ice storm. Dev Psychobiol 56(1):117–125. doi:10.1002/dev.21085

    Article  PubMed  Google Scholar 

  9. Schulz LC (2010) The Dutch Hunger Winter and the developmental origins of health and disease. PNAS 107(39):16757–16758. doi:10.1073/pnas.1012911107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Painter RC, Roseboom TJ, Bleker OP (2005) Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol 20(3):345–352. doi:10.1016/j.reprotox.2005.04.005

    Article  CAS  PubMed  Google Scholar 

  11. Cao-Lei L, Elgbeili G, Massart R, Laplante DP, Szyf M, King S (2015) Pregnant women’s cognitive appraisal of a natural disaster affects DNA methylation in their children 13 years later: project Ice Storm. Transl Psychol 5:e515. doi:10.1038/tp.2015.13

    Article  CAS  Google Scholar 

  12. Van den Bergh HBR, Loomans ME, Mennes M (2015) Early life influences on cognition, behavior, and emotion in humans: from birth to age 20. Adv Neurobiol 10:315–331. doi:10.1007/978-1-4939-1372-5_15

    Article  PubMed  Google Scholar 

  13. Veru F, Dancause K, Laplante DP, King S, Luheshi G (2015) Prenatal maternal stress predicts reductions in CD4+ lymphocytes, increases in innate-derived cytokines and Th2 shift in adolescents: Project Ice Storm. Physiol Behav. doi:10.1016/j.physbeh.2015.03.016

    PubMed  Google Scholar 

  14. Cao-Lei L, Massart R, Suderman MJ, Machnes Z, Elgbeili G, Laplante DP, Szyf M, King S (2014) DNA methylation signatures triggered by prenatal maternal stress exposure to a natural disaster: Project Ice Storm. PLoS One 9(9):e107653. doi:10.1371/journal.pone.0107653

    Article  PubMed  PubMed Central  Google Scholar 

  15. Glover V, O’Connor TG, O’Donnell K (2010) Prenatal stress and the programming of the HPA axis. Neurosci Biobehav R 35(1):17–22. doi:10.1016/j.neubiorev.2009.11.008

    Article  CAS  Google Scholar 

  16. Skinner MK, Manikkam M, Guerrero-Bosagna C (2010) Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab 21(4):214–222. doi:10.1016/j.tem.2009.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yao Y, Robinson AM, Zucchi FC, Robbins JC, Babenko O, Kovalchuk O, Kovalchuk I, Olson DM, Metz GA (2014) Ancestral exposure to stress epigenetically programs preterm birth risk and adverse maternal and newborn outcomes. BMC Med 12:121. doi:10.1186/s12916-014-0121-6

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gapp K, von Ziegler L, Tweedie-Cullen RY, Mansuy IM (2014) Early life epigenetic programming and transmission of stress-induced traits in mammals: how and when can environmental factors influence traits and their transgenerational inheritance? Bioessays 36(5):491–502. doi:10.1002/bies.201300116

    Article  PubMed  Google Scholar 

  19. Skinner MK, Manikkam M, Guerrero-Bosagna C (2011) Epigenetic transgenerational actions of endocrine disruptors. Reprod Toxicol 31(3):337–343. doi:10.1016/j.reprotox.2010.10.012

    Article  CAS  PubMed  Google Scholar 

  20. Roseboom TJ, Watson ED (2012) The next generation of disease risk: are the effects of prenatal nutrition transmitted across generations? Evidence from animal and human studies. Placenta 33(Suppl 2):e40–e44. doi:10.1016/j.placenta.2012.07.018

    Article  PubMed  Google Scholar 

  21. Meaney MJ (2010) Epigenetics and the biological definition of gene × environment interactions. Child Dev 81(1):41–79. doi:10.1111/j.1467-8624.2009.01381.x

    Article  PubMed  Google Scholar 

  22. Iqbal M, Moisiadis VG, Kostaki A, Matthews SG (2012) Transgenerational effects of prenatal synthetic glucocorticoids on hypothalamic-pituitary-adrenal function. Endocrinology 153(7):3295–3307. doi:10.1210/en.2012-1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zucchi FC, Yao Y, Metz GA (2012) The secret language of destiny: stress imprinting and transgenerational origins of disease. Front Genet 3:96. doi:10.3389/fgene.2012.00096

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ambeskovic M, Soltanpour N, Falkenburg E, Zucchi F, Kold B, Metz G (2016) Ancestral exposure to stress generates new behavioural traits and a functional hemispheric dominance shift. Cereb Cortex

  25. Erickson ZT, Falkenberg EA, Metz GA (2014) Lifespan psychomotor behaviour profiles of multigenerational prenatal stress and artificial food dye effects in rats. PLoS One 9(6):e92132. doi:10.1371/journal.pone.0092132

    Article  PubMed  PubMed Central  Google Scholar 

  26. Skelin I, Needham MA, Molina LM, Metz GA, Gruber AJ (2015) Multigenerational prenatal stress increases the coherence of brain signaling among cortico-striatal-limbic circuits in adult rats. Neuroscience 289:270–278. doi:10.1016/j.neuroscience.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  27. Francis D (1999) Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286(5442):1155–1158. doi:10.1126/science.286.5442.1155

    Article  CAS  PubMed  Google Scholar 

  28. Champagne FA, Meaney MJ (2007) Transgenerational effects of social environment on variations in maternal care and behavioral response to novelty. Behav Neurosci 121(6):1353–1363. doi:10.1037/0735-7044.121.6.1353

    Article  PubMed  Google Scholar 

  29. Wishart DS (2008) Quantitative metabolomics using NMR. TrAC TrAC 27(3):228–237. doi:10.1016/j.trac.2007.12.001

    CAS  Google Scholar 

  30. Emwas A-HM, Salek RM, Griffin JL, Merzaban J (2013) NMR-based metabolomics in human disease diagnosis: applications, limitations, and recommendations. Metabolomics 9(5):1048–1072. doi:10.1007/s11306-013-0524-y

    Article  CAS  Google Scholar 

  31. Lindon JC, Nicholson JK, Holmes E, Everett JR (2000) Metabonomics: metabolic processes studied by NMR spectroscopy of biofluids. Concepts Magn Res 12(5):32

    Article  Google Scholar 

  32. Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29(11):9

    Article  Google Scholar 

  33. Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48(155):17

    Google Scholar 

  34. Zheng P, Chen JJ, Huang T, Wang MJ, Wang Y, Dong MX, Huang YJ, Zhou LK, Xie P (2013) A novel urinary metabolite signature for diagnosing major depressive disorder. J Proteome Res 12(12):5904–5911. doi:10.1021/pr400939q

    Article  CAS  PubMed  Google Scholar 

  35. Holmes E, Tsang TM, Huang JT, Leweke FM, Koethe D, Gerth CW, Nolden BM, Gross S, Schreiber D, Nicholson JK, Bahn S (2006) Metabolic profiling of CSF: evidence that early intervention may impact on disease progression and outcome in schizophrenia. PLoS Med 3(8):e327. doi:10.1371/journal.pmed.0030327

    Article  PubMed  PubMed Central  Google Scholar 

  36. Poland RE, Cloak C, Lutchmansingh PJ, McCracken JT, Chang L, Ernst T (1999) Brain N-acetyl aspartate concentraions measured by 1H MRS are reduced in adult male rats subjected to perinatal stress: preliminary observations and hypothetical implications for neurodevelopmental disorders. J Psychiatr Res 33:11

    Article  Google Scholar 

  37. Macri S, Ceci C, Canese R, Laviola G (2012) Prenatal stress and peripubertal stimulation of the endocannabinoid system differentially regulate emotional responses and brain metabolism in mice. PLoS One 7(7):e41821. doi:10.1371/journal.pone.0041821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dumas ME, Davidovic L (2015) Metabolic profiling and phenotyping of central nervous system diseases: metabolites bring insights into brain dysfunctions. J Neuroimmune Pharmacol 10(3):402–424. doi:10.1007/s11481-014-9578-5

    Article  PubMed  Google Scholar 

  39. Serriere S, Barantin L, Seguin F, Tranquart F, Nadal-Desbarats L (2011) Impact of prenatal stress on 1H NMR-based metabolic profiling of rat amniotic fluid. Magma 24(5):267–275. doi:10.1007/s10334-011-0260-0

    Article  CAS  PubMed  Google Scholar 

  40. Skinner MK (2008) What is an epigenetic transgenerational phenotype? F3 or F2. Reprod Toxicol 25(1):2–6. doi:10.1016/j.reprotox.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  41. Chrousos G, Torpy DJ, Gold PW (1998) Interactions between the hypothalamic-pituitary-adrenal-axis and the female reproductive system: clinical implications. Ann Intern Med 129(3):12

    Article  Google Scholar 

  42. Clancy B, Finlay BL, Darlington RB, Anand KJ (2007) Extrapolating brain development from experimental species to humans. Neurotoxicology 28(5):931–937. doi:10.1016/j.neuro.2007.01.014

    Article  PubMed  Google Scholar 

  43. Metz GA (2007) Stress as a modulator of motor system function pathology. Rev Neurosci 18(3–4):13

    Google Scholar 

  44. Xia J, Psychogios N, Young N, Wishart DS (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37(Web Server issue):W652–W660. doi:10.1093/nar/gkp356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40(Web Server issue):W127–W133. doi:10.1093/nar/gks374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xia J, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res. doi:10.1093/nar/gkv380

    Google Scholar 

  47. Yun Y-H, Liang F, Deng B-C, Lai G-B, Vicente Gonçalves CM, Lu H-M, Yan J, Huang X, Yi L-Z, Liang Y-Z (2015) Informative metabolites identification by variable importance analysis based on random variable combination. Metabolomics 11(6):1539–1551. doi:10.1007/s11306-015-0803-x

    Article  CAS  Google Scholar 

  48. Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, van Duijnhoven JPM, van Dorsten FA (2008) Assessment of PLSDA cross validation. Metabolomics 4(1):81–89. doi:10.1007/s11306-007-0099-6

    Article  CAS  Google Scholar 

  49. Xia J, Wishart DS (2010) MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res 38(Web Server issue):W71–W77. doi:10.1093/nar/gkq329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xia J, Wishart DS (2010) MetPA: a web-based metabolomics tool for pathways analysis and visualization. Bioinformatics 26(18):5

    Article  Google Scholar 

  51. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A (2013) HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Res 41(Database issue):D801–D807. doi:10.1093/nar/gks1065

    Article  CAS  PubMed  Google Scholar 

  52. Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37(Database issue):D603–D610. doi:10.1093/nar/gkn810

    Article  CAS  PubMed  Google Scholar 

  53. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau DD, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, Macinnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel HJ, Querengesser L (2007) HMDB: the human metabolome database. Nucleic Acids Res 35(Database issue):D521–D526. doi:10.1093/nar/gkl923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P, Dame ZT, Poelzer J, Huynh J, Yallou FS, Psychogios N, Dong E, Bogumil R, Roehring C, Wishart DS (2013) The human urine metabolome. PloS One 8(9):e73076. doi:10.1371/journal.pone.0073076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Szymanska E, Saccenti E, Smilde AK, Westerhuis JA (2012) Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics 8(Suppl 1):3–16. doi:10.1007/s11306-011-0330-3

    Article  CAS  PubMed  Google Scholar 

  56. Ward ID, Zucchi FC, Robbins JC, Falkenberg EA, Olson DM, Benzies K, Metz GA (2013) Transgenerational programming of maternal behaviour by prenatal stress. BMC Pregnancy Childbirth 13(Suppl 1):S9. doi:10.1186/1471-2393-13-S1-S9

    Article  PubMed  PubMed Central  Google Scholar 

  57. Charmandari E, Tsigos C, Chrousos G (2005) Endocrinology of the stress response. Annu Rev Physiol 67:259–284. doi:10.1146/annurev.physiol.67.040403.120816

    Article  CAS  PubMed  Google Scholar 

  58. Fernstrom JD, Fernstrom MH (2007) Tyrosine, phenylalanine, and catecholamine synthesis and function and in the brain. J Nutr 137:9

    Google Scholar 

  59. Dhabhar FS (2008) Enhancing versus suppressive effects of stress on immunce function: implications for immunoprotection versus immunopathology. Allergy Asthma Clin Immunol 4(1):10. doi:10.2310/7480.2008.00001

    Article  Google Scholar 

  60. Ruth MR, Feild CJ (2013) The immnce modifying effects of amino acids on the gut-associated lymphoid tissue. J Anim Sci Biotechnol 4(27):10

    Google Scholar 

  61. Smolinska S, Jutel M, Crameri R, O’Mahony L (2014) Histamine and gut mucosal immune regulation. Allergy 69(3):273–281. doi:10.1111/all.12330

    Article  CAS  PubMed  Google Scholar 

  62. Lees HJ, Swann JR, Wilson ID, Nicholson JK, Holmes E (2013) Hippurate: the natural history of a mammalian-microbial cometabolite. J Proteome Res 12(4):1527–1546. doi:10.1021/pr300900b

    Article  CAS  PubMed  Google Scholar 

  63. Persky H, Grinker RP, Mirsky IA (1950) The excretion of hippuric acid in subjects with free anxiety. J Clin Invest 29(1):5

    Article  Google Scholar 

  64. Novak M, Bjorck L, Giang KW, Heden-Stahl C, Wilhelmsen L, Rosengren A (2013) Perceived stress and incidence of Type 2 diabetes: a 35-year follow-up study of middle-aged Swedish men. Diabetic Med 1:e8–e16. doi:10.1111/dme.12037

    Article  Google Scholar 

  65. Franklin TB, Russig H, Weiss IC, Graff J, Linder N, Michalon A, Vizi S, Mansuy IM (2010) Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry 68(5):408–415. doi:10.1016/j.biopsych.2010.05.036

    Article  PubMed  Google Scholar 

  66. Denenberg VH (1969) Open-field behavior in the rat: what does it mean? Ann N Y Acad Sci 159:8

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the assistance and expertise of Michael Opyr in coding some of the MATLAB scripts used for data analysis. This research was supported by the Alberta Innovates-Health Solutions (AI-HS) Interdisciplinary Team Grant #200700595 “Preterm Birth and Healthy Outcomes” (GM); the Norlien/Palix Foundation, Alberta Family Wellness Initiative and the Alberta Centre for Child, Family and Community Research (GM); Natural Sciences and Engineering Research Council of Canada (GM), the Canadian Institutes of Health Research #102652 (GM); and the University of Lethbridge Health Research Accelerator Fund (HRAF; GM and TM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tony Montina or Gerlinde A. S. Metz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiss, D., Ambeskovic, M., Montina, T. et al. Stress transgenerationally programs metabolic pathways linked to altered mental health. Cell. Mol. Life Sci. 73, 4547–4557 (2016). https://doi.org/10.1007/s00018-016-2272-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2272-4

Keywords

Navigation