Skip to main content
Log in

Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Proline-rich antimicrobial peptides are a group of cationic host defense peptides of vertebrates and invertebrates characterized by a high content of proline residues, often associated with arginine residues in repeated motifs. Those isolated from some mammalian and insect species, although not evolutionarily related, use a similar mechanism to selectively kill Gram-negative bacteria, with a low toxicity to animals. Unlike other types of antimicrobial peptides, their mode of action does not involve the lysis of bacterial membranes but entails penetration into susceptible cells, where they then act intracellularly. Some aspects of the transport system and cytoplasmic targets have been elucidated. These features make them attractive both as anti-infective lead compounds and as a new class of potential cell-penetrating peptides capable of internalising membrane-impermeant drugs into both bacterial and eukaryotic cells

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AMP:

Antimicrobial peptide

CPP:

Cell-penetrating peptide

LPS:

Lipopolysaccharide

PR-AMP:

Proline-rich AMPs

HDP:

Host defence peptide

References

  1. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

  2. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  PubMed  CAS  Google Scholar 

  3. Hancock RE, Brown KL, Mookherjee N (2006) Host defence peptides from invertebrates—emerging antimicrobial strategies. Immunobiology 211:315–322

    Article  PubMed  CAS  Google Scholar 

  4. Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta 1788:1687–1692

    Article  PubMed  CAS  Google Scholar 

  5. Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P (1989) Apidaecins: antibacterial peptides from honeybees. EMBO J 8:2387–2391

    PubMed  CAS  Google Scholar 

  6. Boman HG, Agerberth B, Boman A (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61:2978–2984

    PubMed  CAS  Google Scholar 

  7. Podda E, Benincasa M, Pacor S, Micali F, Mattiuzzo M, Gennaro R, Scocchi M (2006) Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim Biophys Acta 1760:1732–1740

    PubMed  CAS  Google Scholar 

  8. Casteels P, Tempst P (1994) Apidaecin-type peptide antibiotics function through a non-poreforming mechanism involving stereospecificity. Biochem Biophys Res Commun 199:339–345

    Article  PubMed  CAS  Google Scholar 

  9. Gennaro R, Zanetti M, Benincasa M, Podda E, Miani M (2002) Pro-rich antimicrobial peptides from animals: structure, biological functions and mechanism of action. Curr Pharm Des 8:763–778

    Article  PubMed  CAS  Google Scholar 

  10. Gennaro R, Skerlavaj B, Romeo D (1989) Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect Immun 57:3142–3146

    PubMed  CAS  Google Scholar 

  11. Bulet P, Urge L, Ohresser S, Hetru C, Otvos L Jr (1996) Enlarged scale chemical synthesis and range of activity of drosocin, an O-glycosylated antibacterial peptide of Drosophila. Eur J Biochem 238:64–69

    Article  PubMed  CAS  Google Scholar 

  12. Castle M, Nazarian A, Yi SS, Tempst P (1999) Lethal effects of apidaecin on Escherichia coli involve sequential molecular interactions with diverse targets. J Biol Chem 274:32555–32564

    Article  PubMed  CAS  Google Scholar 

  13. Otvos L Jr (2002) The short proline-rich antibacterial peptide family. Cell Mol Life Sci 59:1138–1150

    Article  PubMed  CAS  Google Scholar 

  14. Li J, Xu X, Yu H, Yang H, Huang Z, Lai R (2006) Direct antimicrobial activities of PR-bombesin. Life Sci 78:1953–1956

    Article  PubMed  CAS  Google Scholar 

  15. Schnapp D, Kemp GD, Smith VJ (1996) Purification and characterization of a proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the haemocytes of the shore crab, Carcinus maenas. Eur J Biochem 240:532–539

    Article  PubMed  CAS  Google Scholar 

  16. Destoumieux D, Bulet P, Strub JM, Van Dorsselaer A, Bachere E (1999) Recombinant expression and range of activity of penaeidins, antimicrobial peptides from penaeid shrimp. Eur J Biochem 266:335–346

    Article  PubMed  CAS  Google Scholar 

  17. Rolland JL, Abdelouahab M, Dupont J, Lefevre F, Bachere E, Romestand B (2010) Stylicins, a new family of antimicrobial peptides from the Pacific blue shrimp Litopenaeus stylirostris. Mol Immunol 47:1269–1277

    Article  PubMed  CAS  Google Scholar 

  18. Gueguen Y, Bernard R, Julie F, Paulina S, Delphine DG, Franck V, Philippe B, Evelyne B (2009) Oyster hemocytes express a proline-rich peptide displaying synergistic antimicrobial activity with a defensin. Mol Immunol 46:516–522

    Article  PubMed  CAS  Google Scholar 

  19. Zanetti M, Gennaro R, Scocchi M, Skerlavaj B (2000) Structure and biology of cathelicidins. Adv Exp Med Biol 479:203–218

    Article  PubMed  CAS  Google Scholar 

  20. Lehrer RI, Ganz T (2002) Cathelicidins: a family of endogenous antimicrobial peptides. Curr Opin Hematol 9:18–22

    Article  PubMed  Google Scholar 

  21. Scocchi M, Skerlavaj B, Romeo D, Gennaro R (1992) Proteolytic cleavage by neutrophil elastase converts inactive storage proforms to antibacterial bactenecins. Eur J Biochem 209:589–595

    Article  PubMed  CAS  Google Scholar 

  22. Frank RW, Gennaro R, Schneider K, Przybylski M, Romeo D (1990) Amino acid sequences of two proline-rich bactenecins. Antimicrobial peptides of bovine neutrophils. J Biol Chem 265:18871–18874

    PubMed  CAS  Google Scholar 

  23. Scocchi M, Wang S, Gennaro R, Zanetti M (1998) Cloning and analysis of a transcript derived from two contiguous genes of the cathelicidin family. Biochim Biophys Acta 1398:393–396

    PubMed  CAS  Google Scholar 

  24. Shamova O, Brogden KA, Zhao C, Nguyen T, Kokryakov VN, Lehrer RI (1999) Purification and properties of proline-rich antimicrobial peptides from sheep and goat leukocytes. Infect Immun 67:4106–4111

    PubMed  CAS  Google Scholar 

  25. Huttner KM, Lambeth MR, Burkin HR, Burkin DJ, Broad TE (1998) Localization and genomic organization of sheep antimicrobial peptide genes. Gene 206:85–91

    Article  PubMed  CAS  Google Scholar 

  26. Agerberth B, Lee JY, Bergman T, Carlquist M, Boman HG, Mutt V, Jornvall H (1991) Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur J Biochem 202:849–854

    Article  PubMed  CAS  Google Scholar 

  27. Pungercar J, Strukelj B, Kopitar G, Renko M, Lenarcic B, Gubensek F, Turk V (1993) Molecular cloning of a putative homolog of proline/arginine-rich antibacterial peptides from porcine bone marrow. FEBS Lett 336:284–288

    Article  PubMed  CAS  Google Scholar 

  28. Scocchi M, Romeo D, Zanetti M (1994) Molecular cloning of Bac7, a proline- and arginine-rich antimicrobial peptide from bovine neutrophils. FEBS Lett 352:197–200

    Article  PubMed  CAS  Google Scholar 

  29. Cabras T, Longhi R, Secundo F, Nocca G, Conti S, Polonelli L, Fanali C, Inzitari R, Petruzzelli R, Messana I, Castagnola M, Vitali A (2008) Structural and functional characterization of the porcine proline-rich antifungal peptide SP-B isolated from salivary gland granules. J Pept Sci 14:251–260

    Article  PubMed  CAS  Google Scholar 

  30. Bulet P, Hetru C, Dimarcq JL, Hoffmann D (1999) Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 23:329–344

    Article  PubMed  CAS  Google Scholar 

  31. Bulet P, Dimarcq JL, Hetru C, Lagueux M, Charlet M, Hegy G, Van Dorsselaer A, Hoffmann JA (1993) A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. J Biol Chem 268:14893–14897

    PubMed  CAS  Google Scholar 

  32. Li WF, Ma GX, Zhou XX (2006) Apidaecin-type peptides: biodiversity, structure-function relationships and mode of action. Peptides 27:2350–2359

    Article  PubMed  CAS  Google Scholar 

  33. Casteels P, Romagnolo J, Castle M, Casteels-Josson K, Erdjument-Bromage H, Tempst P (1994) Biodiversity of apidaecin-type peptide antibiotics. Prospects of manipulating the antibacterial spectrum and combating acquired resistance. J Biol Chem 269:26107–26115

    PubMed  CAS  Google Scholar 

  34. Cociancich S, Dupont A, Hegy G, Lanot R, Holder F, Hetru C, Hoffmann JA, Bulet P (1994) Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus. Biochem J 300:567–575

    PubMed  CAS  Google Scholar 

  35. Miura K, Ueno S, Kamiya K, Kobayashi J, Matsuoka H, Ando K, Chinzei Y (1996) Cloning of mRNA sequences for two antibacterial peptides in a hemipteran insect, Riptortus clavatus. Zool Sci 13:111–117

    Article  PubMed  CAS  Google Scholar 

  36. Mackintosh JA, Veal DA, Beattie AJ, Gooley AA (1998) Isolation from an ant Myrmecia gulosa of two inducible O-glycosylated proline-rich antibacterial peptides. J Biol Chem 273:6139–6143

    Article  PubMed  CAS  Google Scholar 

  37. Levashina EA, Ohresser S, Bulet P, Reichhart JM, Hetru C, Hoffmann JA (1995) Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur J Biochem 233:694–700

    Article  PubMed  CAS  Google Scholar 

  38. Hara S, Yamakawa M (1995) A novel antibacterial peptide family isolated from the silkworm, Bombyx mori. Biochem J 310:651–656

    PubMed  CAS  Google Scholar 

  39. Casteels P, Ampe C, Riviere L, Van Damme J, Elicone C, Fleming M, Jacobs F, Tempst P (1990) Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur J Biochem 187:381–386

    Article  PubMed  CAS  Google Scholar 

  40. Lavine MD, Chen G, Strand MR (2005) Immune challenge differentially affects transcript abundance of three antimicrobial peptides in hemocytes from the moth Pseudoplusia includens. Insect Biochem Mol Biol 35:1335–1346

    Article  PubMed  CAS  Google Scholar 

  41. Liu G, Kang D, Steiner H (2000) Trichoplusia ni lebocin, an inducible immune gene with a downstream insertion element. Biochem Biophys Res Commun 269:803–807

    Article  PubMed  CAS  Google Scholar 

  42. Cuthbertson BJ, Deterding LJ, Williams JG, Tomer KB, Etienne K, Blackshear PJ, Bullesbach EE, Gross PS (2008) Diversity in penaeidin antimicrobial peptide form and function. Dev Comp Immunol 32:167–181

    Article  PubMed  CAS  Google Scholar 

  43. Destoumieux D, Munoz M, Bulet P, Bachère E (2000) Penaeidins, a family of antimicrobial peptides from penaeid shrimp (Crustacea, Decapoda). Cell Mol Life Sci 57:1260–1271

    Google Scholar 

  44. Yang Y, Poncet J, Garnier J, Zatylny C, Bachere E, Aumelas A (2003) Solution structure of the recombinant penaeidin-3, a shrimp antimicrobial peptide. J Biol Chem 278:36859–36867

    Article  PubMed  CAS  Google Scholar 

  45. O’Leary NA, Gross PS (2006) Genomic structure and transcriptional regulation of the penaeidin gene family from Litopenaeus vannamei. Gene 371:75–83

    Article  PubMed  CAS  Google Scholar 

  46. Jiravanichpaisal P, Lee SY, Kim YA, Andren T, Soderhall I (2007) Antibacterial peptides in hemocytes and hematopoietic tissue from freshwater crayfish Pacifastacus leniusculus: characterization and expression pattern. Dev Comp Immunol 31:441–455

    Article  PubMed  CAS  Google Scholar 

  47. Imjongjirak C, Amparyup P, Tassanakajon A (2011) Two novel antimicrobial peptides, arasin-likeSp and GRPSp, from the mud crab Scylla paramamosain, exhibit the activity against some crustacean pathogenic bacteria. Fish Shellfish Immunol 30:706–712

    Google Scholar 

  48. Stensvag K, Haug T, Sperstad SV, Rekdal O, Indrevoll B, Styrvold OB (2008) Arasin 1, a proline-arginine-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. Dev Comp Immunol 32:275–285

    Article  PubMed  CAS  Google Scholar 

  49. Noga EJ, Stone KL, Wood A, Gordon WL, Robinette D (2010) Primary structure and cellular localization of callinectin, an antimicrobial peptide from the blue crab. Dev Comp Immunol [Epub ahead of print]

  50. Shi J, Ross CR, Chengappa MM, Sylte MJ, McVey DS, Blecha F (1996) Antibacterial activity of a synthetic peptide (PR-26) derived from PR-39, a proline-arginine-rich neutrophil antimicrobial peptide. Antimicrob Agents Chemother 40:115–121

    PubMed  CAS  Google Scholar 

  51. Chan YR, Zanetti M, Gennaro R, Gallo RL (2001) Anti-microbial activity and cell binding are controlled by sequence determinants in the anti-microbial peptide PR-39. J Invest Dermatol 116:230–235

    Article  PubMed  CAS  Google Scholar 

  52. Linde CM, Hoffner SE, Refai E, Andersson M (2001) In vitro activity of PR-39, a proline-arginine-rich peptide, against susceptible and multi-drug-resistant Mycobacterium tuberculosis. J Antimicrob Chemother 47:575–580

    Article  PubMed  CAS  Google Scholar 

  53. Freer E, Pizarro-Cerda J, Weintraub A, Bengoechea JA, Moriyon I, Hultenby K, Gorvel JP, Moreno E (1999) The outer membrane of Brucella ovis shows increased permeability to hydrophobic probes and is more susceptible to cationic peptides than are the outer membranes of mutant rough Brucella abortus strains. Infect Immun 67:6181–6186

    PubMed  CAS  Google Scholar 

  54. Scocchi M, Romeo D, Cinco M (1993) Antimicrobial activity of two bactenecins against spirochetes. Infect Immun 61:3081–3083

    PubMed  CAS  Google Scholar 

  55. Benincasa M, Scocchi M, Podda E, Skerlavaj B, Dolzani L, Gennaro R (2004) Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates. Peptides 25:2055–2061

    Article  PubMed  CAS  Google Scholar 

  56. Anderson RC, Hancock RE, Yu PL (2004) Antimicrobial activity and bacterial-membrane interaction of ovine-derived cathelicidins. Antimicrob Agents Chemother 48:673–676

    Article  PubMed  CAS  Google Scholar 

  57. Cuthbertson BJ, Bullesbach EE, Fievet J, Bachere E, Gross PS (2004) A new class (penaeidin class 4) of antimicrobial peptides from the Atlantic white shrimp (Litopenaeus setiferus) exhibits target specificity and an independent proline-rich-domain function. Biochem J 381:79–86

    Article  PubMed  CAS  Google Scholar 

  58. Gallo RL, Ono M, Povsic T, Page C, Eriksson E, Klagsbrun M, Bernfield M (1994) Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc Natl Acad Sci USA 91:11035–11039

    Article  PubMed  CAS  Google Scholar 

  59. Huang HJ, Ross CR, Blecha F (1997) Chemoattractant properties of PR-39, a neutrophil antibacterial peptide. J Leukoc Biol 61:624–629

    PubMed  CAS  Google Scholar 

  60. Li J, Post M, Volk R, Gao Y, Li M, Metais C, Sato K, Tsai J, Aird W, Rosenberg RD, Hampton TG, Sellke F, Carmeliet P, Simons M (2000) PR39, a peptide regulator of angiogenesis. Nat Med 6:49–55

    Article  PubMed  CAS  Google Scholar 

  61. Ramanathan B, Wu H, Ross CR, Blecha F (2004) PR-39, a porcine antimicrobial peptide, inhibits apoptosis: involvement of caspase-3. Dev Comp Immunol 28:163–169

    Article  PubMed  CAS  Google Scholar 

  62. Madhani M, Barchowsky A, Klei L, Ross CR, Jackson SK, Swartz HM, James PE (2002) Antibacterial peptide PR-39 affects local nitric oxide and preserves tissue oxygenation in the liver during septic shock. Biochim Biophys Acta 1588:232–240

    PubMed  CAS  Google Scholar 

  63. James PE, Madhani M, Ross C, Klei L, Barchowsky A, Swartz HM (2003) Tissue hypoxia during bacterial sepsis is attenuated by PR-39, an antibacterial peptide. Adv Exp Med Biol 530:645–652

    PubMed  CAS  Google Scholar 

  64. Tomasinsig L, Skerlavaj B, Papo N, Giabbai B, Shai Y, Zanetti M (2006) Mechanistic and functional studies of the interaction of a proline-rich antimicrobial peptide with mammalian cells. J Biol Chem 281:383–391

    Article  PubMed  CAS  Google Scholar 

  65. Tomasinsig L, Benincasa M, Scocchi M, Skerlavaj B, Tossi A, Zanetti M, Gennaro R (2010) Role of cathelicidin peptides in bovine host defense and healing. Probiotics Antimicro Prot 2:12–20

    Article  CAS  Google Scholar 

  66. Otvos L Jr, Bokonyi K, Varga I, Otvos BI, Hoffmann R, Ertl HC, Wade JD, McManus AM, Craik DJ, Bulet P (2000) Insect peptides with improved protease-resistance protect mice against bacterial infection. Protein Sci 9:742–749

    Article  PubMed  CAS  Google Scholar 

  67. Benincasa M, Pelillo C, Zorzet S, Garrovo C, Biffi S, Gennaro R, Scocchi M (2010) The proline-rich peptide Bac7 (1–35) reduces mortality from Salmonella typhimurium in a mouse model of infection. BMC Microbiol 10:178

    Article  PubMed  CAS  Google Scholar 

  68. Cabiaux V, Agerberth B, Johansson J, Homble F, Goormaghtigh E, Ruysschaert JM (1994) Secondary structure and membrane interaction of PR-39, a Pro + Arg-rich antibacterial peptide. Eur J Biochem 224:1019–1027

    Article  PubMed  CAS  Google Scholar 

  69. Raj PA, Edgerton M (1995) Functional domain and poly-l-proline II conformation for candidacidal activity of bactenecin 5. FEBS Lett 368:526–530

    Article  PubMed  CAS  Google Scholar 

  70. Raj PA, Marcus E, Edgerton M (1996) Delineation of an active fragment and poly(l-proline) II conformation for candidacidal activity of bactenecin 5. Biochemistry 35:4314–4325

    Article  PubMed  CAS  Google Scholar 

  71. Niidome T, Mihara H, Oka M, Hayashi T, Saiki T, Yoshida K, Aoyagi H (1998) Structure and property of model peptides of proline/arginine-rich region in bactenecin 5. J Pept Res 51:337–345

    Article  PubMed  CAS  Google Scholar 

  72. Dutta RC, Nagpal S, Salunke DM (2008) Functional mapping of apidaecin through secondary structure correlation. Int J Biochem Cell Biol 40:1005–1015

    Article  PubMed  CAS  Google Scholar 

  73. Cuthbertson BJ, Yang Y, Bachere E, Bullesbach EE, Gross PS, Aumelas A (2005) Solution structure of synthetic penaeidin-4 with structural and functional comparisons with penaeidin-3. J Biol Chem 280:16009–16018

    Article  PubMed  CAS  Google Scholar 

  74. Tokunaga Y, Niidome T, Hatakeyama T, Aoyagi H (2001) Antibacterial activity of bactenecin 5 fragments and their interaction with phospholipid membranes. J Pept Sci 7:297–304

    Article  PubMed  CAS  Google Scholar 

  75. Gobbo M, Benincasa M, Bertoloni G, Biondi B, Dosselli R, Papini E, Reddi E, Rocchi R, Tavano R, Gennaro R (2009) Substitution of the arginine/leucine residues in apidaecin Ib with peptoid residues: effect on antimicrobial activity, cellular uptake, and proteolytic degradation. J Med Chem 52:5197–5206

    Article  PubMed  CAS  Google Scholar 

  76. Otvos L Jr (2000) Antibacterial peptides isolated from insects. J Pept Sci 6:497–511

    Article  PubMed  CAS  Google Scholar 

  77. Wade D, Boman A, Wahlin B, Drain CM, Andreu D, Boman HG, Merrifield RB (1990) All-D amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci USA 87:4761–4765

    Article  PubMed  CAS  Google Scholar 

  78. Bessalle R, Kapitkovsky A, Gorea A, Shalit I, Fridkin M (1990) All-D-magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett 274:151–155

    Article  PubMed  CAS  Google Scholar 

  79. Benincasa M, Pacor S, Gennaro R, Scocchi M (2009) Rapid and reliable detection of antimicrobial peptide penetration into gram-negative bacteria based on fluorescence quenching. Antimicrob Agents Chemother 53:3501–3504

    Article  PubMed  CAS  Google Scholar 

  80. Mattiuzzo M, Bandiera A, Gennaro R, Benincasa M, Pacor S, Antcheva N, Scocchi M (2007) Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol Microbiol 66:151–163

    Article  PubMed  CAS  Google Scholar 

  81. Otvos L, Jr., O I, Rogers ME, Consolvo PJ, Condie BA, Lovas S, Bulet P, Blaszczyk-Thurin M (2000) Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 39:14150–14159

  82. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  PubMed  CAS  Google Scholar 

  83. Tomoyasu T, Mogk A, Langen H, Goloubinoff P, Bukau B (2001) Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol Microbiol 40:397–413

    Article  PubMed  CAS  Google Scholar 

  84. Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L Jr (2001) The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40:3016–3026

    Article  PubMed  CAS  Google Scholar 

  85. Chesnokova LS, Slepenkov SV, Witt SN (2004) The insect antimicrobial peptide, l-pyrrhocoricin, binds to and stimulates the ATPase activity of both wild-type and lidless DnaK. FEBS Lett 565:65–69

    Article  PubMed  CAS  Google Scholar 

  86. Liebscher M, Roujeinikova A (2009) Allosteric coupling between the lid and interdomain linker in DnaK revealed by inhibitor binding studies. J Bacteriol 191:1456–1462

    Article  PubMed  CAS  Google Scholar 

  87. Scocchi M, Lüthy C, Decarli P, Mignogna G, Christen P, Gennaro R (2009) The Proline-rich antibacterial peptide Bac7 binds to and inhibits in vitro the molecular chaperone DnaK. Int J Pept Res Therapeut 15:147–155

    Article  CAS  Google Scholar 

  88. Scocchi M, Mattiuzzo M, Benincasa M, Antcheva N, Tossi A, Gennaro R (2008) Investigating the mode of action of proline-rich antimicrobial peptides using a genetic approach: a tool to identify new bacterial targets amenable to the design of novel antibiotics. Methods Mol Biol 494:161–176

    Article  PubMed  CAS  Google Scholar 

  89. Pranting M, Negrea A, Rhen M, Andersson DI (2008) Mechanism and fitness costs of PR-39 resistance in Salmonella enterica serovar Typhimurium LT2. Antimicrob Agents Chemother 52:2734–2741

    Article  PubMed  CAS  Google Scholar 

  90. Salomon RA, Farias RN (1995) The peptide antibiotic microcin 25 is imported through the TonB pathway and the SbmA protein. J Bacteriol 177:3323–3325

    PubMed  CAS  Google Scholar 

  91. LeVier K, Phillips RW, Grippe VK, Roop RM 2nd, Walker GC (2000) Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival. Science 287:2492–2493

    Article  PubMed  CAS  Google Scholar 

  92. Yorgey P, Lee J, Kordel J, Vivas E, Warner P, Jebaratnam D, Kolter R (1994) Posttranslational modifications in microcin B17 define an additional class of DNA gyrase inhibitor. Proc Natl Acad Sci USA 91:4519–4523

    Article  PubMed  CAS  Google Scholar 

  93. Kragol G, Hoffmann R, Chattergoon MA, Lovas S, Cudic M, Bulet P, Condie BA, Rosengren KJ, Montaner LJ, Otvos L Jr (2002) Identification of crucial residues for the antibacterial activity of the proline-rich peptide, pyrrhocoricin. Eur J Biochem 269:4226–4237

    Article  PubMed  CAS  Google Scholar 

  94. Otvos L Jr, Wade JD, Lin F, Condie BA, Hanrieder J, Hoffmann R (2005) Designer antibacterial peptides kill fluoroquinolone-resistant clinical isolates. J Med Chem 48:5349–5359

    Article  PubMed  CAS  Google Scholar 

  95. Cassone M, Vogiatzi P, La Montagna R, De Olivier Inacio V, Cudic P, Wade JD, Otvos L Jr (2008) Scope and limitations of the designer proline-rich antibacterial peptide dimer, A3-APO, alone or in synergy with conventional antibiotics. Peptides 29:1878–1886

    Article  PubMed  CAS  Google Scholar 

  96. Noto PB, Abbadessa G, Cassone M, Mateo GD, Agelan A, Wade JD, Szabo D, Kocsis B, Nagy K, Rozgonyi F, Otvos L Jr (2008) Alternative stabilities of a proline-rich antibacterial peptide in vitro and in vivo. Protein Sci 17:1249–1255

    Article  PubMed  CAS  Google Scholar 

  97. Szabo D, Ostorhazi E, Binas A, Rozgonyi F, Kocsis B, Cassone M, Wade JD, Nolte O, Otvos L Jr (2010) The designer proline-rich antibacterial peptide A3-APO is effective against systemic Escherichia coli infections in different mouse models. Int J Antimicrob Agents 35:357–361

    Article  PubMed  CAS  Google Scholar 

  98. Rozgonyi F, Szabo D, Kocsis B, Ostorhazi E, Abbadessa G, Cassone M, Wade JD, Otvos L Jr (2009) The antibacterial effect of a proline-rich antibacterial peptide A3-APO. Curr Med Chem 16:3996–4002

    Article  PubMed  CAS  Google Scholar 

  99. Schneider M, Dorn A (2001) Differential infectivity of two Pseudomonas species and the immune response in the milkweed bug, Oncopeltus fasciatus (Insecta: Hemiptera). J Invertebr Pathol 78:135–140

    Article  PubMed  CAS  Google Scholar 

  100. Knappe D, Piantavigna S, Hansen A, Mechler A, Binas A, Nolte O, Martin LL, Hoffmann R (2010) Oncocin (VDKPPYLPRPRPPRRIYNR-NH2): a novel antibacterial peptide optimized against gram-negative human pathogens. J Med Chem 53:5240–5247

    Article  PubMed  CAS  Google Scholar 

  101. Ghiselli R, Giacometti A, Cirioni O, Circo R, Mocchegiani F, Skerlavaj B, D’Amato G, Scalise G, Zanetti M, Saba V (2003) Neutralization of endotoxin in vitro and in vivo by Bac7(1–35), a proline-rich antibacterial peptide. Shock 19:577–581

    Article  PubMed  CAS  Google Scholar 

  102. Lee PH, Ohtake T, Zaiou M, Murakami M, Rudisill JA, Lin KH, Gallo RL (2005) Expression of an additional cathelicidin antimicrobial peptide protects against bacterial skin infection. Proc Natl Acad Sci USA 102:3750–3755

    Article  PubMed  CAS  Google Scholar 

  103. Sadler K, Eom KD, Yang JL, Dimitrova Y, Tam JP (2002) Translocating proline-rich peptides from the antimicrobial peptide bactenecin 7. Biochemistry 41:14150–14157

    Article  PubMed  CAS  Google Scholar 

  104. Dmitriev RI, Ropiak HM, Yashunsky DV, Ponomarev GV, Zhdanov AV, Papkovsky DB (2010) Bactenecin 7 peptide fragment as a tool for intracellular delivery of a phosphorescent oxygen sensor. FEBS J 277:4651–4661

    Article  PubMed  CAS  Google Scholar 

  105. Otvos L Jr, Cudic M, Chua BY, Deliyannis G, Jackson DC (2004) An insect antibacterial peptide-based drug delivery system. Mol Pharm 1:220–232

    Article  PubMed  CAS  Google Scholar 

  106. Viljakainen L, Evans JD, Hasselmann M, Rueppell O, Tingek S, Pamilo P (2009) Rapid evolution of immune proteins in social insects. Mol Biol Evol 26:1791–1801

    Article  PubMed  CAS  Google Scholar 

  107. Chernysh S, Cociancich S, Briand JP, Hetru C, Bulet P (1996) The inducible antibacterial peptides of the hemipteran insect Palomena prasina: identification of a unique family of proline-rich peptides and of a novel insect defensin. J Insect Physiol 42:81–89

    Article  CAS  Google Scholar 

  108. Cheng X, Liu G, Ye G, Wang H, Shen X, Wu K, Xie J, Altosaar I (2009) Screening and cloning of antimicrobial DNA sequences using a vital staining method. Gene 430:132–139

    Article  PubMed  CAS  Google Scholar 

  109. Gueguen Y, Garnier J, Robert L, Lefranc MP, Mougenot I, de Lorgeril J, Janech M, Gross PS, Warr GW, Cuthbertson B, Barracco MA, Bulet P, Aumelas A, Yang Y, Bo D, Xiang J, Tassanakajon A, Piquemal D, Bachere E (2006) PenBase, the shrimp antimicrobial peptide penaeidin database: sequence-based classification and recommended nomenclature. Dev Comp Immunol 30:283–288

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Italian Ministry for University and Research (PRIN 2008), from the Regione Friuli Venezia Giulia grant under the LR 26/2005, art. 23 for the R3A2 network, and the Marie Curie project PIAP-GA-2008-218191.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Gennaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scocchi, M., Tossi, A. & Gennaro, R. Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cell. Mol. Life Sci. 68, 2317–2330 (2011). https://doi.org/10.1007/s00018-011-0721-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0721-7

Keywords

Navigation