Skip to main content
Log in

Role of Cathelicidin Peptides in Bovine Host Defense and Healing

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The in vitro antimicrobial activities and biological effects on host cells were compared for the bovine cathelicidins BMAP-28, an alpha-helical AMP, and Bac5 and Bac7, proline-rich AMPs. Our results confirm that the broad-spectrum activity of BMAP-28 correlates with a high capacity to interact with and permeabilize bacterial membranes, whereas the proline-rich AMPs selectively internalize into the cytoplasm of susceptible Gram-negative bacteria with a non-lytic mechanism. All peptides efficiently translocated into mammalian fibroblastic cells, but while Bac5 and Bac7(1–35) localized to nuclear structures and induced cellular proliferation, BMAP-28 associated with mitochondria and did not induce proliferation. Moreover, BMAP-28 was considerably more cytotoxic than the proline-rich peptides due to cytolytic and pro-apoptotic effects. Our results highlight important functional differences among the bovine cathelicidins and suggest that they contribute to an integrated response of the host to infection, with distinct but complementary activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abiraj K, Prasad HS, Gowda AS, Gowda DC (2004) Design, synthesis and antibacterial activity studies of model peptides of proline/arginine-rich region in bactenecin7. Protein Pept Lett 11:291–300

    Article  CAS  Google Scholar 

  2. Benincasa M, Skerlavaj B, Gennaro R, Pellegrini A, Zanetti M (2003) In vitro and in vivo antimicrobial activity of two alpha-helical cathelicidin peptides and of their synthetic analogs. Peptides 24(11):1723–1731

    Article  CAS  Google Scholar 

  3. Benincasa M, Scocchi M, Podda E, Skerlavaj B, Dolzani L, Gennaro R (2004) Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates. Peptides 25:2055–2061

    Article  CAS  Google Scholar 

  4. Benincasa M, Scocchi M, Pacor S, Tossi A, Nobili D, Basaglia G, Busetti M, Gennaro R (2006) Fungicidal activity of five cathelicidin peptides against clinically isolated yeasts. J Antimicrob Chemother 58:950–959

    Article  CAS  Google Scholar 

  5. Benincasa M, Pacor S, Gennaro R, Scocchi M (2009) Rapid and reliable detection of antimicrobial peptide penetration into gram-negative bacteria based on fluorescence quenching. Antimicrob Agents Chemother 53:3501–3504

    Article  CAS  Google Scholar 

  6. Björstad A, Askarieh G, Brown KL, Christenson K, Forsman H, Onnheim K, Li HN, Teneberg S, Maier O, Hoekstra D, Dahlgren C, Davidson DJ, Bylund J (2009) The host defense peptide LL-37 selectively permeabilizes apoptotic leukocytes. Antimicrob Agents Chemother 53(3):1027–1038

    Article  Google Scholar 

  7. Boehmer JL, Bannermanm DD, Shefcheckm K, Wardm JL (2009) Proteomic analysis of differentially expressed proteins in bovine milk during experimentally induced Escherichia coli mastitis. J Dairy Sci 91(11):4206–4218

    Article  Google Scholar 

  8. Bowdish DM, Davidson DJ, Scott MG, Hancock RE (2005) Immunomodulatory activities of small host defense peptides. Antimicrob Agents Chemother 49:1727–1732

    Article  CAS  Google Scholar 

  9. Bowdish DM, Davidson DJ, Hancock RE (2006) Immunomodulatory properties of defensins and cathelicidins. Curr Top Microbiol Immunol 306:27–66

    Article  CAS  Google Scholar 

  10. Goruppi S, Ruaro E, Varnum B, Schneider C (1997) Requirement of phosphatidylinositol 3-kinase-dependent pathway and Src for Gas6-Axl mitogenic and survival activities in NIH 3T3 fibroblasts. Mol Cell Biol 17:4442–4453

    CAS  Google Scholar 

  11. Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  Google Scholar 

  12. Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30:131–141

    Article  CAS  Google Scholar 

  13. Mattiuzzo M, Bandiera A, Gennaro R, Benincasa M, Pacor S, Antcheva N, Scocchi M (2007) Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol Microbiol 66(1):151–163

    Article  CAS  Google Scholar 

  14. Pacor S, Giangaspero A, Bacac M, Sava G, Tossi A (2002) Analysis of the cytotoxicity of synthetic antimicrobial peptides on mouse leucocytes: implications for systemic use. J Antimicrob Chemother 50:339–348

    Article  CAS  Google Scholar 

  15. Rehaume LM, Hancock RE (2008) Neutrophil-derived defensins as modulators of innate immune function. Crit Rev Immunol 28:185–200

    CAS  Google Scholar 

  16. Riding GA, Hill JR, Jones A, Holland MK, Josh PF, Lehnert SA (2008) Differential proteomic analysis of bovine conceptus fluid proteins in pregnancies generated by assisted reproductive technologies. Proteomics 8(14):2967–2982

    Article  CAS  Google Scholar 

  17. Risso A, Zanetti M, Gennaro R (1998) Cytotoxicity and apoptosis mediated by two peptides of innate immunity. Cell Immunol 189:107–115

    Article  CAS  Google Scholar 

  18. Risso A, Braidot E, Sordano MC, Vianello A, Macrì F, Skerlavaj B, Zanetti M, Gennaro R, Bernardi P (2002) BMAP-28, an antibiotic peptide of innate immunity, induces cell death through opening of the mitochondrial permeability transition pore. Mol Cell Biol 22:1926–1935

    Article  CAS  Google Scholar 

  19. Scocchi M, Mattiuzzo M, Benincasa M, Antcheva N, Tossi A, Gennaro R (2008) Investigating the mode of action of proline-rich antimicrobial peptides using a genetic approach: a tool to identify new bacterial targets amenable to the design of novel antibiotics. Methods Mol Biol 494:161–176

    Article  CAS  Google Scholar 

  20. Scocchi M, Lüthy C, Decarli P, Mignogna G, Christen P, Gennaro R (2009) The proline-rich bactenecin Bac7 binds to and inhibits the molecular chaperone DnaK. Int J Pep Res Ther 15:147–156

    Article  CAS  Google Scholar 

  21. Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6:551–557

    Article  CAS  Google Scholar 

  22. Skerlavaj B, Gennaro R, Bagella L, Merluzzi L, Risso A, Zanetti M (1996) Biological characterization of two novel cathelicidin-derived peptides and identification of structural requirements for their antimicrobial and cell lytic activities. J Biol Chem 271(45):28375–28381

    Article  CAS  Google Scholar 

  23. Tokunaga Y, Niidome T, Hatakeyama T, Aoyagi H (2001) Antibacterial activity of bactenecin 5 fragments and their interaction with phospholipid membranes. J Pept Sci 7:297–304

    Article  CAS  Google Scholar 

  24. Tomasinsig L, Zanetti M (2005) The cathelicidins—structure, function and evolution. Curr Protein Pept Sci 6:23–34

    Article  CAS  Google Scholar 

  25. Tomasinsig L, Scocchi M, Di Loreto C, Artico D, Zanetti M (2002) Inducible expression of an antimicrobial peptide of the innate immunity in polymorphonuclear leukocytes. J Leukoc Biol 72:1003–1010

    CAS  Google Scholar 

  26. Tomasinsig L, Skerlavaj B, Papo N, Giabbai B, Shai Y, Zanetti M (2006) Mechanistic and functional studies of the interaction of a proline-rich antimicrobial peptide with mammalian cells. J Biol Chem 281(1):383–391

    Article  CAS  Google Scholar 

  27. Tomasinsig L, Pizzirani C, Skerlavaj B, Pellegatti P, Gulinelli S, Tossi A, Di Virgilio F, Zanetti M (2008) The human cathelicidin LL-37 modulates the activities of the P2X7 receptor in a structure-dependent manner. J Biol Chem 283(45):30471–30481

    Article  CAS  Google Scholar 

  28. Tomasinsig L, De Conti G, Skerlavaj B, Piccinini R, Mazzilli M, D’Este F, Tossi A, Zanetti M (2010) Broad spectrum activity against bacterial mastitis pathogens and activation of mammary epithelial cells support a protective role of neutrophil cathelicidins in bovine mastitis. Infect Immun (in press)

  29. Tossi A, Sandri L (2002) Molecular diversity in gene-encoded, cationic antimicrobial polypeptides. Curr Pharm Des 8:743–761

    Article  CAS  Google Scholar 

  30. Waddell WJ (1956) A simple ultraviolet spectrophotometric method for the determination of protein. J Lab Clin Med 48:311–334

    CAS  Google Scholar 

  31. Yang D, de la Rosa G, Tewary P, Oppenheim JJ (2009) Alarmins link neutrophils and dendritic cells. Trends Immunol (Epub ahead of print)

  32. Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75:39–48

    Article  Google Scholar 

  33. Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7(2):179–196

    CAS  Google Scholar 

  34. Zanetti M, Gennaro R, Romeo D (1995) Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 374(1):1–5

    Article  CAS  Google Scholar 

  35. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    Article  CAS  Google Scholar 

  36. Zelezetsky I, Pontillo A, Puzzi L, Antcheva N, Segat L, Pacor S, Crovella S, Tossi A (2006) Evolution of the primate cathelicidin. Correlation between structural variations and antimicrobial activity. J Biol Chem 281:19861–19871

    Article  CAS  Google Scholar 

  37. Zhang Z, Cherryholmes G, Shively JE (2008) Neutrophil secondary necrosis is induced by LL-37 derived from cathelicidin. J Leukoc Biol 84(3):780–788

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Tossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomasinsig, L., Benincasa, M., Scocchi, M. et al. Role of Cathelicidin Peptides in Bovine Host Defense and Healing. Probiotics & Antimicro. Prot. 2, 12–20 (2010). https://doi.org/10.1007/s12602-010-9035-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-010-9035-6

Keywords

Navigation