Skip to main content
Log in

The non-Abelian exponentiation theorem for multiple Wilson lines

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the structure of soft gluon corrections to multi-leg scattering amplitudes in a non-Abelian gauge theory by analysing the corresponding product of semi-infinite Wilson lines. We prove that diagrams exponentiate such that the colour factors in the exponent are fully connected. This completes the generalisation of the non-Abelian exponentiation theorem, previously proven in the case of a Wilson loop, to the case of multiple Wilson lines in arbitrary representations of the colour group. Our proof is based on the replica trick in conjunction with a new formalism where multiple emissions from a Wilson line are described by effective vertices, each having a connected colour factor. The exponent consists of connected graphs made out of these vertices. We show that this readily provides a general colour basis for webs. We further discuss the kinematic combinations that accompany each connected colour factor, and explicitly catalogue all three-loop examples, as necessary for a direct computation of the soft anomalous dimension at this order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.Y. Arefeva, Quantum contour field equations, Phys. Lett. B 93 (1980) 347 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. V. Dotsenko and S. Vergeles, Renormalizability of Phase Factors in the Nonabelian Gauge Theory, Nucl. Phys. B 169 (1980) 527 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. R.A. Brandt, F. Neri and M.-a. Sato, Renormalization of Loop Functions for All Loops, Phys. Rev. D 24 (1981) 879 [INSPIRE].

    ADS  Google Scholar 

  5. G. Korchemsky and A. Radyushkin, Loop space formalism and renormalization group for the infrared asymptotics of QCD, Phys. Lett. B 171 (1986) 459 [INSPIRE].

    ADS  Google Scholar 

  6. S. Ivanov, G. Korchemsky and A. Radyushkin, Infrared asymptotics of perturbative QCD: contour gauges, Yad. Fiz. 44 (1986) 230 [INSPIRE].

    Google Scholar 

  7. G. Korchemsky and A. Radyushkin, Infrared asymptotics of perturbative QCD: renormalization properties of the Wilson loops in higher orders of perturbation theory, Sov. J. Nucl. Phys. 44 (1986) 877 [INSPIRE].

    Google Scholar 

  8. G. Korchemsky and A. Radyushkin, Infrared asymptotics of perturbative QCD: quark and gluon propagators, Sov. J. Nucl. Phys. 45 (1987) 127 [INSPIRE].

    Google Scholar 

  9. G. Korchemsky and A. Radyushkin, Infrared asymptotics of perturbative QCD: vertex functions, Sov. J. Nucl. Phys. 45 (1987) 910 [INSPIRE].

    Google Scholar 

  10. G. Korchemsky and A. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

    Article  ADS  Google Scholar 

  11. G. Korchemsky, Sudakov Form-factor in QCD, Phys. Lett. B 220 (1989) 629 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. G. Korchemsky, Asymptotics of the Altarelli-Parisi-Lipatov Evolution Kernels of Parton Distributions, Mod. Phys. Lett. A 4 (1989) 1257 [INSPIRE].

    ADS  Google Scholar 

  13. J.C. Collins, Sudakov form-factors, Adv. Ser. Direct. High Energy Phys. 5 (1989) 573 [hep-ph/0312336] [INSPIRE].

    Google Scholar 

  14. G. Korchemsky and A. Radyushkin, Infrared factorization, Wilson lines and the heavy quark limit, Phys. Lett. B 279 (1992) 359 [hep-ph/9203222] [INSPIRE].

    ADS  Google Scholar 

  15. N. Kidonakis, G. Oderda and G.F. Sterman, Evolution of color exchange in QCD hard scattering, Nucl. Phys. B 531 (1998) 365 [hep-ph/9803241] [INSPIRE].

    Article  ADS  Google Scholar 

  16. N. Kidonakis and G.F. Sterman, Resummation for QCD hard scattering, Nucl. Phys. B 505 (1997) 321 [hep-ph/9705234] [INSPIRE].

    Article  ADS  Google Scholar 

  17. N. Kidonakis and G.F. Sterman, Subleading logarithms in QCD hard scattering, Phys. Lett. B 387 (1996) 867 [INSPIRE].

    ADS  Google Scholar 

  18. J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. B. Basso, G. Korchemsky and J. Kotanski, Cusp anomalous dimension in maximally supersymmetric Yang-Mills theory at strong coupling, Phys. Rev. Lett. 100 (2008) 091601 [arXiv:0708.3933] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. N. Drukker, Integrable Wilson loops, arXiv:1203.1617 [INSPIRE].

  23. Y.-T. Chien, M.D. Schwartz, D. Simmons-Duffin and I.W. Stewart, Jet Physics from Static Charges in AdS, Phys. Rev. D 85 (2012) 045010 [arXiv:1109.6010] [INSPIRE].

    ADS  Google Scholar 

  24. I. Cherednikov, T. Mertens and F. Van der Veken, Cusped light-like Wilson loops in gauge theories, Phys. Part. Nucl. 44 (2013) 250 [arXiv:1210.1767] [INSPIRE].

    Article  Google Scholar 

  25. I. Cherednikov, T. Mertens and F. Van der Veken, Evolution of cusped light-like Wilson loops and geometry of the loop space, Phys. Rev. D 86 (2012) 085035 [arXiv:1208.1631] [INSPIRE].

    ADS  Google Scholar 

  26. J.M. Henn and T. Huber, The four-loop cusp anomalous dimension from iterated Wilson line integrals, arXiv:1304.6418 [INSPIRE].

  27. S.G. Naculich and H.J. Schnitzer, Eikonal methods applied to gravitational scattering amplitudes, JHEP 05 (2011) 087 [arXiv:1101.1524] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. C.D. White, Factorization Properties of Soft Graviton Amplitudes, JHEP 05 (2011) 060 [arXiv:1103.2981] [INSPIRE].

    Article  ADS  Google Scholar 

  29. R. Akhoury, R. Saotome and G. Sterman, Collinear and Soft Divergences in Perturbative Quantum Gravity, Phys. Rev. D 84 (2011) 104040 [arXiv:1109.0270] [INSPIRE].

    ADS  Google Scholar 

  30. D. Miller and C. White, The Gravitational cusp anomalous dimension from AdS space, Phys. Rev. D 85 (2012) 104034 [arXiv:1201.2358] [INSPIRE].

    ADS  Google Scholar 

  31. J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1988) 1 [hep-ph/0409313] [INSPIRE].

    Google Scholar 

  32. G. Korchemsky and G. Marchesini, Structure function for large x and renormalization of Wilson loop, Nucl. Phys. B 406 (1993) 225 [hep-ph/9210281] [INSPIRE].

    Article  ADS  Google Scholar 

  33. G. Korchemsky and G. Marchesini, Resummation of large infrared corrections using Wilson loops, Phys. Lett. B 313 (1993) 433 [INSPIRE].

    ADS  Google Scholar 

  34. S. Catani, M.L. Mangano, P. Nason and L. Trentadue, The Resummation of soft gluons in hadronic collisions, Nucl. Phys. B 478 (1996) 273 [hep-ph/9604351] [INSPIRE].

    Article  ADS  Google Scholar 

  35. G. Oderda, Dijet rapidity gaps in photoproduction from perturbative QCD, Phys. Rev. D 61 (2000) 014004 [hep-ph/9903240] [INSPIRE].

    ADS  Google Scholar 

  36. R. Bonciani, S. Catani, M.L. Mangano and P. Nason, NLL resummation of the heavy quark hadroproduction cross-section, Nucl. Phys. B 529 (1998) 424 [Erratum ibid. B 803 (2008) 234] [hep-ph/9801375] [INSPIRE].

    Article  ADS  Google Scholar 

  37. M. Beneke, P. Falgari and C. Schwinn, Soft radiation in heavy-particle pair production: All-order colour structure and two-loop anomalous dimension, Nucl. Phys. B 828 (2010) 69 [arXiv:0907.1443] [INSPIRE].

    Article  ADS  Google Scholar 

  38. M. Beneke, M. Czakon, P. Falgari, A. Mitov and C. Schwinn, Threshold expansion of the \( gg\left( {q\overline{q}} \right)\to Q\overline{Q}+X \) cross section at \( O\left( {\alpha_s^4} \right) \), Phys. Lett. B 690 (2010) 483 [arXiv:0911.5166] [INSPIRE].

    ADS  Google Scholar 

  39. V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Renormalization-Group Improved Predictions for Top-Quark Pair Production at Hadron Colliders, JHEP 09 (2010) 097 [arXiv:1003.5827] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M. Czakon, P. Fiedler and A. Mitov, The total top quark pair production cross-section at hadron colliders through \( O\left( {\alpha_s^4} \right) \), arXiv:1303.6254 [INSPIRE].

  41. C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX(sγ) in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].

    ADS  Google Scholar 

  42. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

    ADS  Google Scholar 

  43. C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].

    ADS  Google Scholar 

  44. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

    ADS  Google Scholar 

  45. C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].

    ADS  Google Scholar 

  46. T. Becher and M. Neubert, Threshold resummation in momentum space from effective field theory, Phys. Rev. Lett. 97 (2006) 082001 [hep-ph/0605050] [INSPIRE].

    Article  ADS  Google Scholar 

  47. T. Becher, M. Neubert and B.D. Pecjak, Factorization and Momentum-Space Resummation in Deep-Inelastic Scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].

    Article  ADS  Google Scholar 

  48. T. Becher, M. Neubert and G. Xu, Dynamical Threshold Enhancement and Resummation in Drell-Yan Production, JHEP 07 (2008) 030 [arXiv:0710.0680] [INSPIRE].

    Article  ADS  Google Scholar 

  49. D. Yennie, S.C. Frautschi and H. Suura, The infrared divergence phenomena and high-energy processes, Annals Phys. 13 (1961) 379 [INSPIRE].

    Article  ADS  Google Scholar 

  50. G.F. Sterman, Summation of Large Corrections to Short Distance Hadronic Cross-Sections, Nucl. Phys. B 281 (1987) 310 [INSPIRE].

    Article  ADS  Google Scholar 

  51. S. Catani and L. Trentadue, Resummation of the QCD Perturbative Series for Hard Processes, Nucl. Phys. B 327 (1989) 323 [INSPIRE].

    Article  ADS  Google Scholar 

  52. E. Laenen, G. Stavenga and C.D. White, Path integral approach to eikonal and next-to-eikonal exponentiation, JHEP 03 (2009) 054 [arXiv:0811.2067] [INSPIRE].

    Article  ADS  Google Scholar 

  53. M.G. Sotiropoulos and G.F. Sterman, Color exchange in near forward hard elastic scattering, Nucl. Phys. B 419 (1994) 59 [hep-ph/9310279] [INSPIRE].

    Article  ADS  Google Scholar 

  54. G.P. Korchemsky, On Near forward high-energy scattering in QCD, Phys. Lett. B 325 (1994) 459 [hep-ph/9311294] [INSPIRE].

    ADS  Google Scholar 

  55. I. Korchemskaya and G. Korchemsky, High-energy scattering in QCD and cross singularities of Wilson loops, Nucl. Phys. B 437 (1995) 127 [hep-ph/9409446] [INSPIRE].

    Article  ADS  Google Scholar 

  56. I. Korchemskaya and G. Korchemsky, Evolution equation for gluon Regge trajectory, Phys. Lett. B 387 (1996) 346 [hep-ph/9607229] [INSPIRE].

    ADS  Google Scholar 

  57. I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].

    Article  ADS  Google Scholar 

  58. Y.V. Kovchegov, NonAbelian Weizsacker-Williams field and a two-dimensional effective color charge density for a very large nucleus, Phys. Rev. D 54 (1996) 5463 [hep-ph/9605446] [INSPIRE].

    ADS  Google Scholar 

  59. I. Balitsky, High-energy QCD and Wilson lines, hep-ph/0101042 [INSPIRE].

  60. I. Balitsky and G.A. Chirilli, High-energy amplitudes in N = 4 SYM in the next-to-leading order, Phys. Lett. B 687 (2010) 204 [arXiv:0911.5192] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  61. J. Jalilian-Marian, A. Kovner, L.D. McLerran and H. Weigert, The Intrinsic glue distribution at very small x, Phys. Rev. D 55 (1997) 5414 [hep-ph/9606337] [INSPIRE].

    ADS  Google Scholar 

  62. E. Gardi, J. Kuokkanen, K. Rummukainen and H. Weigert, Running coupling and power corrections in nonlinear evolution at the high-energy limit, Nucl. Phys. A 784 (2007) 282 [hep-ph/0609087] [INSPIRE].

    ADS  Google Scholar 

  63. V. Del Duca, C. Duhr, E. Gardi, L. Magnea and C.D. White, An infrared approach to Reggeization, Phys. Rev. D 85 (2012) 071104 [arXiv:1108.5947] [INSPIRE].

    ADS  Google Scholar 

  64. V. Del Duca, C. Duhr, E. Gardi, L. Magnea and C.D. White, The Infrared structure of gauge theory amplitudes in the high-energy limit, JHEP 12 (2011) 021 [arXiv:1109.3581] [INSPIRE].

    Article  ADS  Google Scholar 

  65. Y.V. Kovchegov and E. Levin, Quantum chromodynamics at high energy, Cambridge University Press, Cambridge U.K. (2012).

    Book  MATH  Google Scholar 

  66. A.H. Mueller, Soft gluons in the infinite momentum wave function and the BFKL Pomeron, Nucl. Phys. B 415 (1994) 373 [INSPIRE].

    Article  ADS  Google Scholar 

  67. Y. Dokshitzer and G. Marchesini, Hadron collisions and the fifth form-factor, Phys. Lett. B 631 (2005) 118 [hep-ph/0508130] [INSPIRE].

    ADS  Google Scholar 

  68. M.H. Seymour, Symmetry of anomalous dimension matrices for colour evolution of hard scattering processes, JHEP 10 (2005) 029 [hep-ph/0508305] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. A. Kyrieleis and M. Seymour, The Colour evolution of the process qqqqg, JHEP 01 (2006) 085 [hep-ph/0510089] [INSPIRE].

    Article  ADS  Google Scholar 

  70. J.R. Forshaw, A. Kyrieleis and M. Seymour, Super-leading logarithms in non-global observables in QCD, JHEP 08 (2006) 059 [hep-ph/0604094] [INSPIRE].

    Article  ADS  Google Scholar 

  71. N. Kidonakis, Two-loop soft anomalous dimensions and NNLL resummation for heavy quark production, Phys. Rev. Lett. 102 (2009) 232003 [arXiv:0903.2561] [INSPIRE].

    Article  ADS  Google Scholar 

  72. N. Kidonakis, Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution, Phys. Rev. D 82 (2010) 114030 [arXiv:1009.4935] [INSPIRE].

    ADS  Google Scholar 

  73. A. Mitov, G.F. Sterman and I. Sung, The Massive Soft Anomalous Dimension Matrix at Two Loops, Phys. Rev. D 79 (2009) 094015 [arXiv:0903.3241] [INSPIRE].

    ADS  Google Scholar 

  74. T. Becher and M. Neubert, Infrared singularities of QCD amplitudes with massive partons, Phys. Rev. D 79 (2009) 125004 [Erratum ibid. D 80 (2009) 109901] [arXiv:0904.1021] [INSPIRE].

    ADS  Google Scholar 

  75. T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [arXiv:0901.0722] [INSPIRE].

    Article  ADS  Google Scholar 

  76. E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].

    Article  ADS  Google Scholar 

  77. T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory Amplitudes, JHEP 06 (2009) 081 [arXiv:0903.1126] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  78. E. Gardi and L. Magnea, Infrared singularities in QCD amplitudes, Nuovo Cim. C32N5-6 (2009) 137 [arXiv:0908.3273] [INSPIRE].

    Google Scholar 

  79. S.M. Aybat, L.J. Dixon and G.F. Sterman, The Two-loop anomalous dimension matrix for soft gluon exchange, Phys. Rev. Lett. 97 (2006) 072001 [hep-ph/0606254] [INSPIRE].

    Article  ADS  Google Scholar 

  80. S.M. Aybat, L.J. Dixon and G.F. Sterman, The Two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. Rev. D 74 (2006) 074004 [hep-ph/0607309] [INSPIRE].

    ADS  Google Scholar 

  81. L.J. Dixon, E. Gardi and L. Magnea, On soft singularities at three loops and beyond, JHEP 02 (2010) 081 [arXiv:0910.3653] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  82. L. Vernazza, Analysis of the Anomalous-Dimension Matrix of n-jet Operators at 4 Loops, PoS(EPS-HEP2011) [arXiv:1112.3375] [INSPIRE].

  83. M. Sjodahl, Color structure for soft gluon resummation: A General recipe, JHEP 09 (2009) 087 [arXiv:0906.1121] [INSPIRE].

    Article  ADS  Google Scholar 

  84. S. Catani, D. de Florian and G. Rodrigo, Space-like (versus time-like) collinear limits in QCD: Is factorization violated?, JHEP 07 (2012) 026 [arXiv:1112.4405] [INSPIRE].

    Article  ADS  Google Scholar 

  85. S. Catani, D. de Florian and G. Rodrigo, Factorization violation in the multiparton collinear limit, PoS(LL2012) [arXiv:1211.7274] [INSPIRE].

  86. J.R. Forshaw, M.H. Seymour and A. Siodmok, On the Breaking of Collinear Factorization in QCD, JHEP 11 (2012) 066 [arXiv:1206.6363] [INSPIRE].

    Article  ADS  Google Scholar 

  87. M. Czakon, A. Mitov and G.F. Sterman, Threshold Resummation for Top-Pair Hadroproduction to Next-to-Next-to-Leading Log, Phys. Rev. D 80 (2009) 074017 [arXiv:0907.1790] [INSPIRE].

    ADS  Google Scholar 

  88. A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of scattering amplitudes with massive partons, Phys. Rev. Lett. 103 (2009) 201601 [arXiv:0907.4791] [INSPIRE].

    Article  ADS  Google Scholar 

  89. A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of massive scattering amplitudes in non-abelian gauge theories, JHEP 11 (2009) 062 [arXiv:0908.3676] [INSPIRE].

    Article  ADS  Google Scholar 

  90. J.-y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Factorization Structure of Gauge Theory Amplitudes and Application to Hard Scattering Processes at the LHC, Phys. Rev. D 80 (2009) 094013 [arXiv:0909.0012] [INSPIRE].

    ADS  Google Scholar 

  91. A. Mitov, G.F. Sterman and I. Sung, Computation of the Soft Anomalous Dimension Matrix in Coordinate Space, Phys. Rev. D 82 (2010) 034020 [arXiv:1005.4646] [INSPIRE].

    ADS  Google Scholar 

  92. A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Infrared Singularities and Soft Gluon Resummation with Massive Partons, Nucl. Phys. Proc. Suppl. 205206 (2010) 98 [arXiv:1006.4680] [INSPIRE].

    Article  Google Scholar 

  93. I. Bierenbaum, M. Czakon and A. Mitov, The singular behavior of one-loop massive QCD amplitudes with one external soft gluon, Nucl. Phys. B 856 (2012) 228 [arXiv:1107.4384] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  94. S.G. Naculich, H. Nastase and H.J. Schnitzer, All-loop infrared-divergent behavior of most-subleading-color gauge-theory amplitudes, JHEP 04 (2013) 114 [arXiv:1301.2234] [INSPIRE].

    Article  ADS  Google Scholar 

  95. Z. Bern, J. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  96. S. Oxburgh and C. White, BCJ duality and the double copy in the soft limit, JHEP 02 (2013) 127 [arXiv:1210.1110] [INSPIRE].

    Article  ADS  Google Scholar 

  97. Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  98. S.G. Naculich, H. Nastase and H.J. Schnitzer, Linear relations between N ¿= 4 supergravity and subleading-color SYM amplitudes, JHEP 01 (2012) 041 [arXiv:1111.1675] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  99. S.G. Naculich, H. Nastase and H.J. Schnitzer, Applications of Subleading Color Amplitudes in N = 4 SYM Theory, Adv. High Energy Phys. 2011 (2011) 190587 [arXiv:1105.3718] [INSPIRE].

    MathSciNet  Google Scholar 

  100. S.G. Naculich, H. Nastase and H.J. Schnitzer, Subleading-color contributions to gluon-gluon scattering in N = 4 SYM theory and relations to N = 8 supergravity, JHEP 11 (2008) 018 [arXiv:0809.0376] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  101. C.F. Berger, Soft gluon exponentiation and resummation, hep-ph/0305076 [INSPIRE].

  102. J. Gatheral, Exponentiation of Eikonal cross-sections in nonabelian gauge theories, Phys. Lett. B 133 (1983) 90 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  103. J. Frenkel and J. Taylor, Nonabelian Eikonal exponentiation, Nucl. Phys. B 246 (1984) 231 [INSPIRE].

    Article  ADS  Google Scholar 

  104. G.F. Sterman, Infrared divergences in perturbative QCD, AIP Conf. Proc. 74 (1981) 22.

    Article  ADS  Google Scholar 

  105. A. Mitov, G. Sterman and I. Sung, Diagrammatic Exponentiation for Products of Wilson Lines, Phys. Rev. D 82 (2010) 096010 [arXiv:1008.0099] [INSPIRE].

    ADS  Google Scholar 

  106. E. Gardi, E. Laenen, G. Stavenga and C.D. White, Webs in multiparton scattering using the replica trick, JHEP 11 (2010) 155 [arXiv:1008.0098] [INSPIRE].

    Article  ADS  Google Scholar 

  107. E. Gardi and C.D. White, General properties of multiparton webs: Proofs from combinatorics, JHEP 03 (2011) 079 [arXiv:1102.0756] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  108. E. Gardi, J.M. Smillie and C.D. White, On the renormalization of multiparton webs, JHEP 09 (2011) 114 [arXiv:1108.1357] [INSPIRE].

    Article  ADS  Google Scholar 

  109. M. Dukes, E. Gardi, E. Steingrimsson and C.D. White, Web worlds, web-colouring matrices and web-mixing matrices, arXiv:1301.6576 [INSPIRE].

  110. M. Dukes, E. Gardi, H. McAslan, D. Scott and C.D. White, in preparation.

  111. V. Ahrens, M. Neubert and L. Vernazza, Structure of Infrared Singularities of Gauge-Theory Amplitudes at Three and Four Loops, JHEP 09 (2012) 138 [arXiv:1208.4847] [INSPIRE].

    Article  ADS  Google Scholar 

  112. S. Catani and M. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].

    Article  ADS  Google Scholar 

  113. D. Grensing and G. Grensing, Generalized Campbell-Baker-Hausdorff formula, path ordering and Bernoulli numbers, Z. Phys. C 33 (1986) 307.

    MathSciNet  ADS  Google Scholar 

  114. V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer M. Smillie.

Additional information

ArXiv ePrint: 1304.7040

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardi, E., Smillie, J.M. & White, C.D. The non-Abelian exponentiation theorem for multiple Wilson lines. J. High Energ. Phys. 2013, 88 (2013). https://doi.org/10.1007/JHEP06(2013)088

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2013)088

Keywords

Navigation