Skip to main content
Log in

General properties of multiparton webs: proofs from combinatorics

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Recently, the diagrammatic description of soft-gluon exponentiation in scattering amplitudes has been generalized to the multiparton case. It was shown that the exponent of Wilson-line correlators is a sum of webs, where each web is formed through mixing between the kinematic factors and colour factors of a closed set of diagrams which are mutually related by permuting the gluon attachments to the Wilson lines. In this paper we use replica trick methods, as well as results from enumerative combinatorics, to prove that web mixing matrices are always: (a) idempotent, thus acting as projection operators; and (b) have zero sum rows: the elements in each row in these matrices sum up to zero, thus removing components that are symmetric under permutation of gluon attachments. Furthermore, in webs containing both planar and non-planar diagrams we show that the zero sum property holds separately for these two sets. The properties we establish here are completely general and form an important step in elucidating the structure of exponentiation in non-Abelian gauge theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Gardi, E. Laenen, G. Stavenga and C.D. White, Webs in multiparton scattering using the replica trick, JHEP 11 (2010) 155 [arXiv:1008.0098] [SPIRES].

    Article  ADS  Google Scholar 

  2. A. Mitov, G. Sterman and I. Sung, Diagrammatic exponentiation for products of Wilson lines, Phys. Rev. D 82 (2010) 096010 [arXiv:1008.0099] [SPIRES].

    ADS  Google Scholar 

  3. L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  5. G.P. Korchemsky, J.M. Drummond and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. L.F. Alday and R. Roiban, Scatteringamplitudes, Wilson loopsandthestring/gaugetheory correspondence, Phys. Rept. 468 (2008) 153 [arXiv:0807.1889] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. L.F. Alday and J. Maldacena, Lectures on scattering amplitudes via AdS/CFT, AIP Conf. Proc. 1031 (2008) 43.

    Article  ADS  Google Scholar 

  9. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, The hexagon Wilson loop and the BDS ansatz for the six-gluon amplitude, Phys. Lett. B 662 (2008) 456 [arXiv:0712.4138] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. V. Del Duca, C. Duhr and V.A. Smirnov, A two-loop octagon Wilson loop in N = 4 SYM, JHEP 09 (2010) 015 [arXiv:1006.4127] [SPIRES].

    Article  ADS  Google Scholar 

  14. V. Del Duca, C. Duhr and V.A. Smirnov, The two-loop hexagon Wilson loop in N = 4 SYM, JHEP 05 (2010) 084 [arXiv:1003.1702] [SPIRES].

    Article  ADS  Google Scholar 

  15. V. Del Duca, C. Duhr and V.A. Smirnov, An analytic result for the two-loop hexagon Wilson loop in N = 4 SYM, JHEP 03 (2010) 099 [arXiv:0911.5332] [SPIRES].

    Article  ADS  Google Scholar 

  16. P. Heslop and V.V. Khoze, Analytic results for MHV Wilson loops, JHEP 11 (2010) 035 [arXiv:1007.1805] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Brandhuber et al., A surprise in the amplitude/Wilson loop duality, JHEP 07 (2010) 080 [arXiv:1004.2855] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. P. Heslop and V.V. Khoze, Regular Wilson loops and MHV amplitudes at weak and strong coupling, JHEP 06 (2010) 037 [arXiv:1003.4405] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Brandhuber, P. Heslop, V.V. Khoze and G. Travaglini, Simplicity of polygon Wilson loops in N = 4 SYM, JHEP 01 (2010) 050 [arXiv:0910.4898] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. B. Eden, G.P. Korchemsky and E. Sokatchev, More on the duality correlators/amplitudes, arXiv:1009.2488 [SPIRES].

  21. L.J. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matrix, JHEP 03 (2010) 020 [arXiv:0907.5418] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, The S-matrix in twistor space, JHEP 03 (2010) 110 [arXiv:0903. 2110] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. N. Beisert et al., Review of AdS/CFT integrability: an overview, arXiv:1012.3982 [SPIRES].

  25. J.M. Drummond, Review of AdS/CFT integrability, chapter V.2: dual superconformal symmetry, arXiv:1012.4002 [SPIRES].

  26. L.F. Alday, Review of AdS/CFT integrability, chapter V.3: scattering amplitudes at strong coupling, arXiv:1012.4003 [SPIRES].

  27. A.H. Mueller, On the asymptotic behavior of the Sudakov form-factor, Phys. Rev. D 20 (1979) 2037 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. A. Sen, Asymptotic behavior of the Sudakov form-factor in QCD, Phys. Rev. D 24 (1981) 3281 [SPIRES].

    ADS  Google Scholar 

  29. A. Sen, Asymptotic behavior of the wide angle on-shell quark scattering amplitudes in nonabelian gauge theories, Phys. Rev. D 28 (1983) 860 [SPIRES].

    ADS  Google Scholar 

  30. J.C. Collins, Algorithm to compute corrections to the Sudakov form-factor, Phys. Rev. D 22 (1980) 1478 [SPIRES].

    ADS  Google Scholar 

  31. L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD, Phys. Rev. D 42 (1990) 4222 [SPIRES].

    ADS  Google Scholar 

  32. N. Kidonakis, G. Oderda and G.F. Sterman, Evolution of color exchange in QCD hard scattering, Nucl. Phys. B 531 (1998) 365 [hep-ph/9803241] [SPIRES].

    Article  ADS  Google Scholar 

  33. G.F. Sterman and M.E. Tejeda-Yeomans, Multi-loop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [SPIRES].

    ADS  Google Scholar 

  34. A.M. Polyakov, Gauge fields as rings of glue, Nucl. Phys. B 164 (1980) 171 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. I.Y. Arefeva, Quantum contour field equations, Phys. Lett. B 93 (1980) 347 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  36. V.S. Dotsenko and S.N. Vergeles, Renormalizability of phase factors in the nonabelian gauge theory, Nucl. Phys. B 169 (1980) 527 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. R.A. Brandt, F. Neri and M.-a. Sato, Renormalization of loop functions for all loops, Phys. Rev. D 24 (1981) 879 [SPIRES].

    ADS  Google Scholar 

  38. G.P. Korchemsky and A.V. Radyushkin, Loop space formalism and renormalization group for the infrared asymptotics of QCD, Phys. Lett. B 171 (1986) 459 [SPIRES].

    ADS  Google Scholar 

  39. S.V. Ivanov, G.P. Korchemsky and A.V. Radyushkin, Infrared asymptotics of perturbative QCD: contour gauges, Yad. Fiz. 44 (1986) 230 [SPIRES].

    Google Scholar 

  40. G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys. B 283 (1987) 342 [SPIRES].

    Article  ADS  Google Scholar 

  41. G.P. Korchemsky, Sudakov form-factor in QCD, Phys. Lett. B 220 (1989) 629 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  42. G.P. Korchemsky, Asymptotics of the Altarelli-Parisi-Lipatov evolution kernels of parton distributions, Mod. Phys. Lett. A4 (1989) 1257 [SPIRES].

    ADS  Google Scholar 

  43. S.M. Aybat, L.J. Dixon and G.F. Sterman, The two-loop anomalous dimension matrix for soft gluon exchange, Phys. Rev. Lett. 97 (2006) 072001 [hep-ph/0606254] [SPIRES].

    Article  ADS  Google Scholar 

  44. S.M. Aybat, L.J. Dixon and G.F. Sterman, The two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. Rev. D 74 (2006) 074004 [hep-ph/0607309] [SPIRES].

    ADS  Google Scholar 

  45. N. Kidonakis, Two-loop soft anomalous dimensions and NNLL resummation for heavy quark production, Phys. Rev. Lett. 102 (2009) 232003 [arXiv:0903.2561] [SPIRES].

    Article  ADS  Google Scholar 

  46. A. Mitov, G.F. Sterman and I. Sung, The massive soft anomalous dimension matrix at two loops, Phys. Rev. D 79 (2009) 094015 [arXiv:0903.3241] [SPIRES].

    ADS  Google Scholar 

  47. T. Becher and M. Neubert, Infrared singularities of QCD amplitudes with massive partons, Phys. Rev. D 79 (2009) 125004 [arXiv:0904.1021] [SPIRES].

    ADS  Google Scholar 

  48. M. Beneke, P. Falgari and C. Schwinn, Soft radiation in heavy-particle pair production: all-order colour structure and two-loop anomalous dimension, Nucl. Phys. B 828 (2010) 69 [arXiv:0907.1443] [SPIRES].

    Article  ADS  Google Scholar 

  49. M. Czakon, A. Mitov and G.F. Sterman, Threshold resummation for top-pair hadroproduction to next-to-next-to-leading log, Phys. Rev. D 80 (2009) 074017 [arXiv:0907.1790] [SPIRES].

    ADS  Google Scholar 

  50. A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of scattering amplitudes with massive partons, Phys. Rev. Lett. 103 (2009) 201601 [arXiv:0907.4791] [SPIRES].

    Article  ADS  Google Scholar 

  51. A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of massive scattering amplitudes in non-abelian gauge theories, JHEP 11 (2009) 062 [arXiv:0908.3676] [SPIRES].

    Article  ADS  Google Scholar 

  52. N. Kidonakis, Two-loop soft anomalous dimensions with massive and massless quarks, arXiv:0910.0473 [SPIRES].

  53. J.-y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Factorization structure of gauge theory amplitudes and application to hard scattering processes at the LHC, Phys. Rev. D 80 (2009) 094013 [arXiv:0909.0012] [SPIRES].

    ADS  Google Scholar 

  54. A. Mitov, G.F. Sterman and I. Sung, Computation of the soft anomalous dimension matrix in coordinate space, Phys. Rev. D 82 (2010) 034020 [arXiv:1005.4646] [SPIRES].

    ADS  Google Scholar 

  55. A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Infrared singularities and soft gluon resummation with massive partons, Nucl. Phys. Proc. Suppl. 205 206 (2010) 98 [arXiv:1006.4680] [SPIRES].

    Article  Google Scholar 

  56. T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [arXiv:0901.0722] [SPIRES].

    Article  ADS  Google Scholar 

  57. E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [SPIRES].

    Article  ADS  Google Scholar 

  58. T. Becher and M. Neubert, On the structure of infrared singularities of gauge-theory amplitudes, JHEP 06 (2009) 081 [arXiv:0903.1126] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  59. L.J. Dixon, L. Magnea and G.F. Sterman, Universal structure of subleading infrared poles in gauge theory amplitudes, JHEP 08 (2008) 022 [arXiv:0805.3515] [SPIRES].

    Article  ADS  Google Scholar 

  60. L.J. Dixon, Matter dependence of the three-loop soft anomalous dimension matrix, Phys. Rev. D 79 (2009) 091501 [arXiv:0901.3414] [SPIRES].

    ADS  Google Scholar 

  61. L.J. Dixon, E. Gardi and L. Magnea, On soft singularities at three loops and beyond, JHEP 02 (2010) 081 [arXiv:0910.3653] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  62. E. Gardi and L. Magnea, Infrared singularities in QCD amplitudes, Nuovo Cim. C32N 5–6 (2009) 137 [arXiv:0908.3273] [SPIRES].

    Google Scholar 

  63. T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [SPIRES].

    Article  ADS  Google Scholar 

  64. G.F. Sterman, Infrared divergences in perturbative QCD (talk), AIP Conf. Proc. 74 (1981) 22.

    Article  ADS  Google Scholar 

  65. J.G.M. Gatheral, Exponentiation of eikonal cross-sections in nonabelian gauge theories, Phys. Lett. B 133 (1983) 90 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  66. J. Frenkel and J.C. Taylor, Nonabelian eikonal exponentiation, Nucl. Phys. B 246 (1984) 231 [SPIRES].

    Article  ADS  Google Scholar 

  67. C.F. Berger, Soft gluon exponentiation and resummation, hep-ph/0305076 [SPIRES].

  68. E. Laenen, G. Stavenga and C.D. White, Path integral approach to eikonal and next-to-eikonal exponentiation, JHEP 03 (2009) 054 [arXiv:0811.2067] [SPIRES].

    Article  ADS  Google Scholar 

  69. M. Mezard, G. Parisi and M. Virasoro, Spin glass theory and beyond, World Scientific, Singapore (1987), p. 476.

    MATH  Google Scholar 

  70. E. Laenen, L. Magnea, G. Stavenga and C.D. White, Next-to-eikonal corrections to soft gluon radiation: a diagrammatic approach, JHEP 01 (2011) 141 [arXiv:1010.1860] [SPIRES].

    Article  ADS  Google Scholar 

  71. I.y. Arefeva, Reduced large-N models as amorphous systems, Phys. Lett. B 124 (1983) 221 [SPIRES].

    Article  ADS  Google Scholar 

  72. M. Fujita, Y. Hikida, S. Ryu and T. Takayanagi, Disordered systems and the replica method in AdS/CFT, JHEP 12 (2008) 065 [arXiv:0810.5394] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  73. G. Akemann, D. Dalmazi, P.H. Damgaard and J.J.M. Verbaarschot, QCD 3 and the replica method, Nucl. Phys. B 601 (2001) 77 [hep-th/0011072] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  74. P.H. Damgaard and K. Splittorff, Partially quenched chiral perturbation theory and the replica method, Phys. Rev. D 62 (2000) 054509 [hep-lat/0003017] [SPIRES].

    ADS  Google Scholar 

  75. P.H. Damgaard, Partially quenched chiral condensates from the replica method, Phys. Lett. B 476 (2000) 465 [hep-lat/0001002] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  76. E.W. Weisstein, Stirling Number of the Second Kind, from MathWorld — A Wolfram Web Resource, http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html.

  77. Set partitions: stirling numbers, from Digital Library of Mathematical Functions, National Institute of Standards and Technology, http://dlmf.nist.gov/26.8 (2010).

  78. G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  79. Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  80. D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009) 1709 [arXiv:0811.4113] [SPIRES].

    Article  ADS  Google Scholar 

  81. D. Binosi and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Einan Gardi.

Additional information

ArXiv ePrint: 1102.0756

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardi, E., White, C.D. General properties of multiparton webs: proofs from combinatorics. J. High Energ. Phys. 2011, 79 (2011). https://doi.org/10.1007/JHEP03(2011)079

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)079

Keywords

Navigation