Skip to main content
Log in

Nanocrystalline SnO gas sensors in view of surface reactions and modifications

  • Research Summary
  • Nanomaterials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The gas-sensing mechanism of an n-type semiconductor (tin dioxide) gas sensor is reviewed in this paper. It is demonstrated that very high sensitivity can be obtained only when the crystallite size is less than -10 nm. Various mechanisms involving the surface and the bulk modifications of the semiconductor oxide gas sensors are discussed to improve the gas sensitivity. Current challenges and problems in nanocrystalline oxide gas sensors are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Shaver, “ActivatedTungsten Oxide Gas Detectors,”Anal. Phys. Lett, 11 (1967), pp. 255–256.

    Article  CAS  Google Scholar 

  2. S. Kanefusa, M. Nitta, and M. Haradome, “Thick Film Gas Leak Detector For Town Gas,”J. Chem. Soc. Jpn. (1980), pp. 1591–1595.

  3. N. Yamazoe, Y. Kurokawa, and T. Seiyama, “Effects of Additives on Semiconductor Gas Sensors,”Sensors and Actuators, 4 (1983), pp. 283–289.

    Article  CAS  Google Scholar 

  4. G.S.V. Coles, K.J. Gallagher, and J. Watson, “Fabrication and Preliminary Test on Tin (IV) Oxide-Based Gas Sensors,”Sensors and Actuators, 7 (1985), pp. 89–96.

    Article  CAS  Google Scholar 

  5. Y. Okayama et al., “SnO2-Pd-Sb Hydrogen Sensor Nonsensitive to Alcohol,”Denki Kagaku, 54 (1986), pp. 777–782.

    CAS  Google Scholar 

  6. J.F. McAleer et al., “Tin Oxide Gas Sensor Part 1: Aspects of the Surface Chemistry Revealed by Electrical Conductance Variation,”J. Chem. Soc. Faraday Trans., 1 (83) (1987), pp. 1323–1346.

    Google Scholar 

  7. S. Matsushimaetal., “Electronic Interaction between Metal Additives and Tin Oxide in Tin Oxide-Based Gas Sensors,”Jpn. J. Appl. Phys., 27 (1988), pp. 1798–1802.

    Article  Google Scholar 

  8. T. Kobayashi et al., “A Selective CO Sensor Using Ti-Doped Fe2O3with Coprecipitated Ultrafine Particles,”Sensors and Actuators, 13 (1988), pp. 339–349.

    Article  CAS  Google Scholar 

  9. J.F. McAleer et al., “Tin Oxide Gas Sensors Part 2, The Role of Surface Additives,”J. Chem. Soc., Faraday Trans., (84) (1988), pp. 441–457.

  10. D.D. Lee and W.T. Chung, “Gas Sensing Characteristics of SnO2-x Thin Film with Added Pt Fabricated by the Doping Method,”Sensors and Actuators, 20 (1989), pp. 301–305.

    Article  CAS  Google Scholar 

  11. T. Nakahara, K. Takahata, and S. Matsuura, “High Sensitive SnO2 Gas Sensor, I. Detection of Volatile Sulfides,”Proc. Symp. Chemical Sensors (Bennington, New Jersey: Electromechanical Society, 1987), pp. 55–64.

    Google Scholar 

  12. Y. Shimuzu, Y. Takao, and M. Egashira “Detection of Freshness of Fish by aSemiconductive Ru/TiO2 Sensor,”J.EIectrochem. Soc, 135 (1988), pp. 2539–2540.

    Article  Google Scholar 

  13. T. Takada and K. Komasuta, “O3 Gas Sensor of Thin Film Semiconductor ln2O3,” Proc. 4th Int. Conf. Solid-State Sensors and Actuators (Transducers ’87) (Tokyo, Japan, 1987), pp. 693–696.

  14. G. Sberveglieri, S. Groppelli, and G. Coccori, “Radio Frequency Magnetron Sputtering Growth and Characterization of Indium-Tin Oxide (ITO) Thin Films For NO2 Gas Sensors,”Sensors and Actuators, 15 (1988), pp. 235–242.

    Article  CAS  Google Scholar 

  15. S. Matsuura, “New Developments and Applications for Gas Sensors in Japan,”Sensors and Actuators B, 13-14(1993), pp. 7–11.

    Article  Google Scholar 

  16. E.R. Leite et al., “A New Method To Control Particle Size Distribution of SnO2 Nanoparticles For Gas Sensor Applications,”Adv. Mater., 12 (2000), pp. 965–968.

    Article  CAS  Google Scholar 

  17. H. Ogawa et al., “Electrical Properties of Tin Oxide Ultrafine Particle Films,”J. Electrochem Soc: Solid State Sci. andTechnol., 128 (1981), pp. 2020–2025.

    CAS  Google Scholar 

  18. S.V. Manorama, C.V.G. Reddy, and V.J. Rao, “Tin Oxide Nanoparticles Prepared By Sol-Gel Method For an Improved Hydrogen Sulfide Sensor,”Nanostruct. Mater., 11 (1999), pp. 643–649.

    Article  CAS  Google Scholar 

  19. L.M. Cukrov et al., “Gas Sensing Properties of Nanosized Tin Oxide Synthesized by Mechanochemical Processing,”Sensors and Actuators B, 77 (2001), pp. 491–495.

    Article  Google Scholar 

  20. Q. Pan et al., “Gas Sensitive Properties of Nanometer-Sized SnO2,”Sensors and Actuators B, 66 (2000), pp. 237–239.

    Article  Google Scholar 

  21. M. Sriyudthsak, L. Promsong, and S. Panyakeow, “Effect of Carrier Gas on Response of Oxide Semiconductor Gas Sensor,”Sensors and Actuators B,13-14 (1993), pp. 139–142.

    Article  Google Scholar 

  22. W. Liu et al., “The Effectof Dopants on the Electronic Structure of SnO2 Thin Film,”Sensors and Actuators B, 66 (2000), pp. 219–221.

    Article  Google Scholar 

  23. R.K. Srivastava et al., “Sensing Mechanism in Tin Oxide-Based Thick-Film Gas Sensors,”Sensors and Actuators B, 21 (1994), pp. 213–218.

    Article  Google Scholar 

  24. J.W. Hammond and C.-C. Liu, “Silicon Based Microfabricated Tin Oxide Gas Sensor Incorporating Use Hall Effect Measurement,”Sensors and Actuators B, 81 (2001), pp. 25–31.

    Article  Google Scholar 

  25. S.W. Lee, P.P. Tsai, and H. Chen,”Comparison Study of SnO2Thin-and Thick-Film Gas Sensors,”Sensors and Actuators B, 67 (2000), pp. 122–127.

    Article  Google Scholar 

  26. V.M. Jimenez, J.P. Espinos, and A.R. Gonzalez-Elipe, “Effect of Texture and Annealing Treatments in SnO2 and Pd/SnO2 Gas Sensor Materials,”Sensors and Actuators B, 61 (1999), pp. 23–32.

    Article  Google Scholar 

  27. S.R. Davis, A. Wilson, and J.D. Wright, “Flammable Gas Sensors Based on Sol-Gel Materials,”IEE Proc-Circuits Devices Syst., 145 (1998), pp. 379–382.

    Article  Google Scholar 

  28. S.-S. Park and J.D. Mackenzie, “Thickness and Microstructure Effects on Alcohol Sensing of Tin Oxide Thin Films,”Thin Solid Films, 274 (1996), pp. 154–159.

    Article  CAS  Google Scholar 

  29. F. Lu et al., “Nanosized Tin Oxide as the Novel Material With Simultaneous Detection Towards CO, H2, and CH4,”Sensors and Actuators B, 66 (2000), pp. 225–227.

    Article  Google Scholar 

  30. R.K. Sharma and M.C. Bhatnagar, “Improvement of the Oxygen Gas Sensitivity in Doped TiO2 Thick Films,”Sensors and Actuators B, 56 (1999), pp. 215–219.

    Article  Google Scholar 

  31. R.K. Sharma, M.C. Bhatnagar, and G.L. Sharma, “Mechanism in Nb Doped Titania Oxygen Gas Sensor,”Sensors and Actuators B, 46(1998), pp. 194–201.

    Article  Google Scholar 

  32. V Guidi et al., “Preparation of Nanosized Titania Thick and Thin Films as Gas-Sensors,”Sensors and Actuators B, 57 (1999), pp. 197–200.

    Article  Google Scholar 

  33. J.S. Han et al., “The Effect of Al Addition on the Gas Sensing Properties of Fe2O3-Based Sensors,”Sensors and Actuators 8, 75 (2001), pp. 18–23.

    Google Scholar 

  34. D. Davazoglu and K. Georgouleas, “Low Pressure Chemically Vapor Deposited WO3 Thin Films For Integrated Gas Sensor,”J. Electrochem. Soc., 145 (1998), pp. 1346–1350.

    Article  Google Scholar 

  35. W.-Y. Chung et al., “Preparation of Indium Oxide Thin Film by Spin-Coating Method and Its Gas-Sensing Properties,”Sensors and Actuators B, 46 (1998), pp. 139–145.

    Article  Google Scholar 

  36. V. Guidi et al.,“Nanosized Ti-doped MoO3 Thin Films for Gas-Sensing Application,”Sensors and Actuators B, 77(2001), pp. 555–560.

    Article  Google Scholar 

  37. R.S. Niranjan et al., “Ruthenium: Tin OxideThin Film as a Highly Selective Hydrocarbon Sensor,”Sensors and Actuators B, 82 (2002), pp. 82–88.

    Article  Google Scholar 

  38. R.E. Cavichi et al., “Microhotplate Gas Sensor Arrays,”Proc. SPIE, 3857 (1999), pp. 38–49.

    Article  Google Scholar 

  39. B. Panchapakesan et al., “Micromachined Array Studies of Tin Oxide Films: Nucleation, Structure and Gas Sensing Characteristics,”Materials Research Society Symposium Proceedings, 574 (Warrendale, PA: MRS, 1999), pp. 213–218.

    CAS  Google Scholar 

  40. J. Tamaki et al., “Dilute Hydrogen Sulfide Sensing Properties of CuO-SnO2 Thin Film Prepared by Low-Pressure Evaporation Method,”Sensors and Actuators B, 49 (1998), pp. 121–125.

    Article  Google Scholar 

  41. V.V. Kissine, S.A. Voroshilov, and V.V. Sysoev, “Comparative Study of SnO2 and SnO2: Cu Thin Films for Gas Sensor Applications,”Thin Solid Films, 348 (1999), pp. 304–311.

    Article  CAS  Google Scholar 

  42. L.F. Dong, Z.L. Cui, and Z.K. Zhang, “Gas Sensing Properties of Nano-ZnO Prepared By Arc Plasma Method,“Nanostruct. Mater., 8 (1997), pp. 815–823.

    Article  CAS  Google Scholar 

  43. Y. Nakatani and M. Matsuoka, “Effect of Sulfate Ion on Gas sensitive Properties of a-Fe2O3 Ceramics,”Jpn. J.Appl.Phys., 21 (1982), pp. 1758–1762.

    Article  Google Scholar 

  44. S. Xue, W.O. Benoman, and R.A. Lessard, “α-Fe2O3 Thin Films Prepared by MOD from Fe(lll) 2 Ethyl-Hexonate,”Thin Solid Films, 250 (1994), pp. 194–201.

    Article  CAS  Google Scholar 

  45. Y. Lin et al., “Structural and Gas Sensing Properties of Ultrafine a-Fe2O3 Prepared by PECVD,”Mater., Sci, Eng., B47 (1997), pp. 171–176.

    Google Scholar 

  46. G. Williamsand G.S.V. Coles, “NOx Response of Tin Dioxide Based Gas Sensors,”Sensors and Actuators, 15-16(1993), pp. 349–353.

    Google Scholar 

  47. G. Sberveglein, G. Groppelli, and P. Nelli, “Highly Sensitive and Selective NOx and NO2 Sensor Based on Cd-doped SnO2Thin Films,”Sensors and Actuators, 4 (1991), pp. 457–461.

    Article  Google Scholar 

  48. G. Faglia, P. Nelli, and G. Sberveglein, “Frequency Effect on Highly Sensitive NO2 Sensors Based on RGTO SnO2/(Al) Thin Films,”Sensors and Actuators, 18-19(1994), pp. 497–499.

    Google Scholar 

  49. G. Sberveglein et al., “Methods for the Preparation of NO, NO2 and H2 Sensors Based on Tin Oxide Thin Films, Grown by Means of the r.f. Magnetron Sputtering Technique,”Sensors and Actuators, 8 (1992), pp. 77–88.

    Google Scholar 

  50. M. Akiyama, J. Tamaki, and N. Tanazoe,Denki Kagaku, 64 (1996), pp. 1285.

    CAS  Google Scholar 

  51. S. Kanefusa, M. Nitta, and M. Haradome, “H2S Gas Detection by ZrO-doped SnO2,”IEEE Trans. Electron. Dewces, 35(1988), pp. 65–69.

    Article  Google Scholar 

  52. T Nakahara, K. Takahata, and S. Matsura,Chemical Sensors, vol. 87–89, ed. D.R. Turner (Pennington, NJ: The Electrochem. Soc., 1987), p. 55.

    Google Scholar 

  53. J. Mizsei and V. Lantro, “Simultaneous Response of Work Function and Resistivity of Some SnO2 Based Samples to H2 and H2S,”Sensors and Actuators, B4 (1991), pp. 163–168.

    CAS  Google Scholar 

  54. S. Kanefusa, M. Nitta, and M. Haradome, “High Sensitivity H2S Gas Sensors,”J. Electrochem. Soc., 132 (1985), pp. 1770–1773.

    Article  CAS  Google Scholar 

  55. V. Lantto and P. Romppainen, “Response of Some SnO2 Gas Sensors to H2S after Quick Cooling,”J. Electrochem. Soc., 35 (1988), pp. 2550–2556.

    Article  Google Scholar 

  56. T. Maekawa et al., “Sensing Behavior of CuO-Loaded SnO2 Element for H2S Detecting”Chem. Lett., (1991), p. 575.

  57. F. Cosandey, G. Skandan, and A. Singhal, “Materials and Processing Issues in Nanostructured Semiconductor Gas Sensors,”JOM, 52 (10) (2000),www.tms.org/pubs/journals/JOM/0010/Cosandey/ Cosandey-0010.html.

  58. G.B. Barbi et al., “Ultrafine Grain-Size Tin-Oxide Films For Carbon Monoxide Monitoring in Urban Environments,”Sensors and Actuators B, 24-25 (1995), pp. 559–563.

    Article  Google Scholar 

  59. S.R. Morrison, “Semiconductor Gas Sensor,”Sensors and Actuators, 2 (1982), pp. 329–341.

    Article  CAS  Google Scholar 

  60. R. Botter, T. Aste, and D. Beruto, “Influence of Microstructures on the Functional Properties of Tin Oxide-Based Gas Sensors,”Sensors and Actuators 6, 22 (1994), pp. 27–35.

    Google Scholar 

  61. N. Yamazoe and N. Miura, “Some Basic Aspects of Semiconductor Gas Sensors,”Chem. Sens. Technol., Vol. 4, ed.T Seiyama (Kodansha, Japan: in Cooperation with Elsevier, Amsterdam, 1992), p. 30.

    Google Scholar 

  62. Z.M. Jarzebski and J. P. Marton, “Physical Properties of SnO2 Materials,”J. Electrochem. Soc., 123 (1976)—I. “Preparation and Defect Structure,” pp. 199 C-205 C; II. “Electrical Properties,” pp. 299 C-310 C; III. “Optical Properties,” pp. 333 C-346C.

    CAS  Google Scholar 

  63. Y Shimizu and M. Egashira, “Basic Aspects and Challenges of Semiconductor Gas Sensors,”MRS Bulletin, (1998), pp. 18–24.

  64. F. Lu et al., “The Developmentof Low Temperature Sensors,”J. Sens. Technol., 4 (1996), pp. 73–76.

    Google Scholar 

  65. C. Xu et al., “Grain Size Effects on Gas Sensitivity of Porous SnO2-Based Elements,”Sensors and Actuators B, 3(1991), pp. 147–155.

    Article  Google Scholar 

  66. N. Yamazoe, “New Approaches for Improving Semiconductor Gas Sensors,”Sensors and Actuators 6, 5 (1991), pp. 7–19.

    Google Scholar 

  67. G. Heiland, “Homogenous Semiconductor Gas Sensors,”Sensors and Actuators B, 2 (1982), pp. 343–361.

    Article  CAS  Google Scholar 

  68. G. Blaser et al., “Nanostructured Semiconductor Gas Sensor to Overcome Sensitivity Limitations Due to Percolation Effects,”Physica A, 266 (1999), pp. 218–223.

    Article  CAS  Google Scholar 

  69. C. Xu et al., “Effect of Crystallite Size upon Gas Sensitivity of Porous SnO2-Based Sensors,”Tech. Digest, 9th Sensor Symp. (Beijing: International Academic Publishers, 1990), pp. 95–98.

    Google Scholar 

  70. C. Xu et al., “Relationship Between Gas Sensitivity and Microstructure of Porous SnO2,”J. Electrochem. Soc. Jpn., 58 (1990), pp. 1143–1148.

    CAS  Google Scholar 

  71. H. Ogawa, M. Nishikawa, and A. Abe, “Hall Measurement Studies and an Electrical Conductive Model of Tin Oxide Ultrafine Particle Films,”J. Appl. Phys., 53 (1982), pp. 4448–4454.

    Article  CAS  Google Scholar 

  72. J. Xu et al., “Grain Size Control and Gas Sensing Properties of ZnO Gas Sensor,”Sensors and Actuators B, 66(2000), pp. 277–279.

    Article  Google Scholar 

  73. O.K. Tan et al., “Size Effect and Gas Sensing Characteristics of Nanocrystalline xSnO2-(1-x)αFe2O3 Ethanol Gas Sensors,”Sensors and Actuators B, 65 (2000), pp. 361–365.

    Article  Google Scholar 

  74. K. Wada, N. Yamazoe, and T. Seiyama, “Effect of Palladium Addition in Tin (IV) Oxide Gas Sensor,”J. Chem. Soc. Jpn., (1980), pp. 1597–1602.

  75. N. Yamazoe, “Recent Developmentof Semiconductor Gas Sensor Technology,”Shokubai, 28 (1986), pp. 555–559.

    Google Scholar 

  76. S. Matsushima et al., “Role of Additives on Alcohol Sensing by Semiconductor Gas Sensor,”Chem. Lett., (1989), pp. 845–848.

  77. C. Xu et al., “Promoting Effects of Additives on Thermal Stability of Tin Oxide (IV) Fine Particles,”J. Mater. Sci. Lett., 8 (1989), pp. 1092–1094.

    Article  CAS  Google Scholar 

  78. C. Xu et al., “Correlation Between Gas Sensitivity and Crystallite Size in Porous SnO2-Based Sensors,”Chem. Lett.,(1990), pp. 441–444.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seal, S., Shukla, S. Nanocrystalline SnO gas sensors in view of surface reactions and modifications. JOM 54, 35–38 (2002). https://doi.org/10.1007/BF02709091

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02709091

Keywords

Navigation