Skip to main content
Log in

The pH Of muscle

  • Abhandlungen
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Frog muscle in the body is in equilibrium with plasma which contains 2.6 times as much bicarbonate. After allowing for the bicarbonate contained in the tissue spaces, a pH of 6.9 for the interior of the fibres is calculated by theHenderson-Hasselbalch equation, while the outside of the fibres is bathed in a solution of pH 7.34.

A micromethod is described for extracting from muscles minute quantities of extracellular fluid which is shown to be alkaline in reaction (pH 7.4). Fluid obtained from a site of injury is acid (pH 6.27) and this acidity persists to a lesser degree (pH 7.07) even after lactic acid production has been stopped by iodoacetic acid, which indicates intracellular acidity.

When muscles are brought into equilibrium withRinger's solution this wide difference in pH between the inside and the outside of the fibres tends to disappear, but some small excess outside remains even after 5 hours except in the most acid solutions. In alkaline solutions the muscle tends to gain bicarbonate and this takes place to some extent even when the muscle is immersed after dissection in blood of the same frog.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Brooks, M. M., 1931, The Penetration of 1-Naphthol-2-Sulphonate Indophenol, O-Chloro Phenol Indophenol and O-Cresol Indophenol intoValonia. Proc. National Acad. Sci.17, 1–3.

    Article  CAS  Google Scholar 

  • Brookens, N., 1933, Über den Bikarbonatgehalt des lebenden Muskels. Biochem. Zeitschr.267, 349–356.

    CAS  Google Scholar 

  • Chambers, R., 1929, Hydrogen Ion Concentration of Protoplasm. Bull. National Research Council69, 37–44.

    CAS  Google Scholar 

  • — andCameron, G., 1932, Intracellular Hydrion Concentration Studies. VII. The Secreting Cells of the Mesonephros in the Chick. Journ. Cell. and Comp. Physiol.2, 99–103.

    Article  CAS  Google Scholar 

  • —, andLudford, R. J., 1932, Intracellular Hydrion Concentration Studies. V. Colorimetric pH of Malignant Cells in Tissue Culture. Proc. Roy. Soc. B110, 120–124.

    Article  CAS  Google Scholar 

  • —, andPollack, H., 1927, Micrurgical Studies in Cell Physiology. IV. Colorimetric Determinations of the Nucleus and Cytoplasmic pH in the Starfish Egg. Journ. Gen. Physiol.10, 739–755.

    Article  CAS  Google Scholar 

  • —, —, andHiller, S., 1927, The Protoplasmic pH of Living Cells. Proc. Soc. Exp. Biol. and Med.24, 760–761.

    Article  Google Scholar 

  • CowAn, S. L., 1933, The Carbon Dioxide Dissociation Curves and the Buffering of Crab's Muscle and Nerve Preparations. Journ. Exp. Biol.10, 401–411.

    CAS  Google Scholar 

  • Cullen, G. E., Keeler, H. R. andRobinson, H. W., 1925, The pK of theHenderson-Hasselbalch Equation for Hydrion Concentration of Serum. Journ. Biol. Chem.66, 301–322.

    CAS  Google Scholar 

  • Fauré-Fremiet, E., 1923, Variations de l'acalinité de l'œuf de Sabellaria pendant la maturation. Comp. rend. soc. biol.88, 863.

    Google Scholar 

  • Fenn, W. O., 1928, The Carbon Dioxide Dissociation Curve of Nerve and Muscle. Amer. Journ. Physiol.85, 207–223.

    CAS  Google Scholar 

  • —, andCobb, D. M., 1933. The Potassium Equilibrium in Muscle. Journ. Gen. Physiol.17, 629–656.

    Article  Google Scholar 

  • —, —,Hegnauer, A. H. andMarsh, B. S., 1934, Electrolytes in Nerve. Amer. Journ. Physiol.110, 74–96.

    CAS  Google Scholar 

  • —, —, andMarsh, B. S., 1934, Sodium and Chloride in Frog Muscle. Amer. Journ. Physiol.110, 261–272.

    CAS  Google Scholar 

  • Ferguson, J. K. W. andIrving, L., 1929, A Method to Determine the Carbon Dioxide Content of Muscle. Journ. Biol. Chem.84, 143–153.

    CAS  Google Scholar 

  • Furusawa, K. andKerridge, P. M. T., 1927, The Hydrogen Ion Concentration of the Muscles of Marine Animals. Journ. Marine Biol. Assoc.14, 657–659.

    Article  CAS  Google Scholar 

  • —, —, 1927, The Hydrogen Ion Concentration of the Muscles of the Cat. Journ. Physiol.63, 33–41.

    Article  CAS  Google Scholar 

  • Hastings, A. B. andSendroy, J., 1925, The Effect of Variation in Ionic Strength on the Apparent First and Second Dissociation Constants of Carbonic Acid. Journ. Biol. Chem.65, 445–455.

    CAS  Google Scholar 

  • —, —, andvan Slyke, D. D., 1928, Studies of the Gas and Electrolyte Equilibria in Blood. XII. The Value of pK' in theHenderson-Hasselbalch Equation for Blood Serum. Journ. Biol. Chem.79, 183–192.

    CAS  Google Scholar 

  • Irving, L., Foster, H. C. andFerguson, J. K. W., 1932, The Carbon Dioxide Dissociation Curve of Living Mammalian Muscle. Journ. Biol. Chem.95, 95–113.

    CAS  Google Scholar 

  • Lewis, M. R., 1923, Reversible Gelation in Living Cells.John Hopkins Hosp. Bull.34, 373–379.

    Google Scholar 

  • Lundsgaard, E., 1930, Untersuchungen über Muskelkontraktionen ohne Milchsäurebildung. Biochem. Zeitschr.217, 162–177.

    CAS  Google Scholar 

  • Mackler, H., Olmsted, J. M. D. andSimpson, W. W., 1930, Phosphocreatine as a Buffer in Mammalian Muscle. Amer. Journ. Physiol.94, 626–629.

    CAS  Google Scholar 

  • Margaria, R., 1932, A Direct Method for Registering the pH of Muscle during Contraction. Boll. soc. ital. biol. sper.7, 557–561.

    CAS  Google Scholar 

  • Meldrum, N. U. andRoughton, F. J. W., 1933, The State of Carbon Dioxide in Blood. Journ. Physiol.80, 143–170.

    Article  CAS  Google Scholar 

  • Meyerhof, O. andLohmann, K., 1926, Über die Vorgänge bei der Muskelermüdung. Biochem. Zeitschr.168, 128–165.

    CAS  Google Scholar 

  • —,Möhle, W. andSchulz, W., 1932, Über die Reaktionsänderung des Muskels im Zusammenhang mit Spannungsentwicklung und chemischen Umsatz. Biochem. Zeitschr.246, 285–318.

    CAS  Google Scholar 

  • Netter, H., 1934, Die Stellung des Kaliums im Elektrolytsystem des Muskels. Pflüger's Arch.234, 680–695.

    Article  CAS  Google Scholar 

  • Ritchie, A. D., 1922, The Reaction of Resting and Active Muscle. Journ. Physiol.56, 53–57.

    Article  CAS  Google Scholar 

  • Root, W. S., 1933, The Carbon Dioxide dissociation Curve of Frog's Skeletal Muscle with Special Reference to the Time of Exposure to Carbon Dioxide. Journ. Cell. and Comp. Physiol.3, 101–112.

    Article  CAS  Google Scholar 

  • Rous, P., 1925, The Relative Reaction within Living Mammalian Tissues. IV. Indicated Differences in the Reaction of the Organs on Vital Staining with Phthaleins. Journ. Exp. Med.41, 739–759.

    Article  CAS  Google Scholar 

  • Schmidtmann, M., 1924, Über eine Methode zur Bestimmung der Wasserstoffzahl im Gewebe und in einzelnen Zellen. Biochem. Zeitschr.150, 253–255.

    CAS  Google Scholar 

  • Van Slyke, D. D., Hastings, A. B., Murray, C. D. andSendroy, J., 1925, Studies of the Gas and Electrolyte Equilibria in Blood. VIII. The Distribution of Hydrogen, Chloride and Bicarbonate Ions in Oxygenated and Reduced Blood. Journ. Biol. Chem.65, 701–728.

    Google Scholar 

  • Voegtlin, C., Fitch, R. H., Kahler, H. andJohnson, J. M., 1934, The Hydrogen-ion Concentration of Mammalian Voluntary Muscle Under Various Conditions. Amer. Journ. Physiol.107, 539–550.

    CAS  Google Scholar 

  • Warburg, E. J., 1922, Studies on Carbonic Acid Compounds and Hydrogen Ion Activities in Blood and Salt Solutions. A Contribution to the Theory of the Equation of Lawrence J.Henderson and K. A.Hasselbalch. Biochem. Journ.16, 153–340.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We are indebted to MissDoris M. Cobb for technical assistance in this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fenn, W.O., Maurer, F.W. The pH Of muscle. Protoplasma 24, 337–345 (1935). https://doi.org/10.1007/BF01605687

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01605687

Keywords

Navigation