Skip to main content
Log in

The kinetics of cytosolic calcium in the right ventricular myocardium of guinea pigs and rats

  • Biophysics of Complex Systems
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The characteristics of tension increase and decline, as well as those of the calcium transients, have been measured in the trabeculae of the right cardiac ventricle of the guinea pig and rat in the isometric contraction mode with different preloads. Measurements were performed at different temperatures of physiological saline and the effects of inhibition of calcium removal from the cytosol mediated by Na+–Ca2+ exchange and the ATP-dependent Ca2+ pump of the sarcoplasmic reticulum (SERCA2a) were analyzed. Emergence of the “bump” phase (a phase of brief deceleration of the decay of the calcium transient) was observed in the guinea pig myocardium as the temperature was increased from 25 to 30°C; earlier observations of this phenomenon were reported only for rats. As the temperature was elevated to 35°C, the “bump” phase in the guinea pig myocardium transformed into a “plateau” phase of the calcium transient. The effect of temperature on the course of the decay of the calcium transient in the rat myocardium was negligible. In contrast, a gradual stretching of the right ventricular trabecula of the rat was accompanied by the emergence of the “bump” phase and a gradual increase of its parameters (amplitude, integral intensity, and duration), whereas preload did not exert a similar effect on the guinea pig myocardium. Selective inhibition of the reverse mode of Na+–Ca2+ exchange did not affect the characteristics of the decay of the calcium transient in guinea pig myocardium. Selective inhibition of SERCA2a in the guinea pig and rat myocardium had a significant modifying effect on the decay phase of the calcium transient and resulted in emergence of the “bump” phase or an increase in the intensity of this phase in the myocardium of these animal species. The characteristics of this phase can be used to quantify the length-dependent activation of myocardial contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TnC:

troponin C

SERCA2a:

ATP-dependent calcium pump of the sarcoplasmic reticulum, cardiac isoform

“bump”:

a phase of short-lived deceleration of the decay of the calcium transient

CaT:

calcium transient

TTP:

time required to attain the peak of contraction or CaT

References

  1. D. G. Allen and J. C. Kentish, J. Mol. Cell. Cardiol. 17 (9), 821 (1985).

    Article  Google Scholar 

  2. D. P. Dobesh, et al., Am. J. Physiol. Heart Circ. Physiol. 282 (3), H1055 (2002).

    Article  Google Scholar 

  3. K. L. Kreutziger, et al., J. Physiol. 586 (15), 3683 (2008).

    Article  Google Scholar 

  4. B. V. Alvarez, et al., Circ. Res. 85 (8), 716 (1999).

    Article  Google Scholar 

  5. N. G. Pérez, et al., Circ. Res. 88 (4), 376 (2001).

    Article  Google Scholar 

  6. N. Milani-Nejad, et al., J. Gen. Physiol. 141 (1), 133 (2013).

    Article  Google Scholar 

  7. B. J. Biesiadecki, et al., Biophys. Rev. 6, 273 (2014).

    Article  Google Scholar 

  8. G. P. Farman, et al., Am. J. Physiol. Heart Circ. Physiol. 300, H2155 (2011).

    Article  Google Scholar 

  9. N. Fukuda, et al., Circulation 104 (14), 1639 (2001).

    Article  Google Scholar 

  10. T. Wannenburg, et al., Am. J. Physiol. Heart Circ. Physiol. 279 (2), H779 (2000).

    Google Scholar 

  11. J. W. Bassani, et al., J. Physiol. 476, 279 (1994).

    Article  Google Scholar 

  12. D. M. Bers, Circ. Res. 87 (4), 275 (2000).

    Article  Google Scholar 

  13. U. Mackiewicz and B. Lewartowski, J. Physiol. Pharmacol. 57 (1), 3 (2006).

    Google Scholar 

  14. D. M. Bers, et al., J. Physiol. 417, 537 (1989).

    Article  Google Scholar 

  15. J. L. Puglisi, et al., Am. J. Physiol. 270, H1772 (1996).

    Google Scholar 

  16. D. G. Allen, et al., J. Physiol. 406, 359 (1988).

    Article  Google Scholar 

  17. M.-L. Ward et al., Prog. Biophys. Mol. Biol. 97, 232 (2008).

    Article  Google Scholar 

  18. O. Lookin and Yu. Protsenko, Cent. Eur. J. Biol. 6 (5), 730 (2011).

    Google Scholar 

  19. C. L. Elias, et al., Am. J. Physiol. Heart Circ. Physiol. 281 (3), H1334 (2001).

    Google Scholar 

  20. T. Iwamoto, et al., Mol. Pharmacol. 66 (1), 45 (2004).

    Article  MathSciNet  Google Scholar 

  21. M. S. Kirby, et al., J. Biol. Chem. 267 (18), 12545 (1992).

    Google Scholar 

  22. J. W. Bassani, et al., Am. J. Physiol. 265 (2, Pt 1), C533 (1993).

    Google Scholar 

  23. R. A. Bassani and J. W. Bassani, Braz. J. Med. Biol. Res. 36 (12), 1717 (2003).

    Article  Google Scholar 

  24. M. P. Blaustein and W. J. Lederer, Physiol. Rev. 79 (3), 763 (1999).

    Google Scholar 

  25. D. M. Bers, et al., Cardiovasc. Res. 57, 897 (2003).

    Article  Google Scholar 

  26. H. Reuter, et al., Cardiovasc. Res. 67, 198 (2005).

    Article  Google Scholar 

  27. S. Ozdemir, et al., Circ. Res. 102, 1398 (2008).

    Article  Google Scholar 

  28. W. E. Louch, et al., Physiology 27, 308 (2012).

    Article  Google Scholar 

  29. C. M. Terracciano, et al., Cardiovasc. Res. 49 (1), 38 (2001).

    Article  Google Scholar 

  30. M. Seth, et al., Proc. Natl. Acad. Sci. USA. 101 (47), 16683 (2004).

    Article  ADS  Google Scholar 

  31. J. C. Kentish and A. Wrzosek, J. Physiol. 506 (2), 431 (1998).

    Article  Google Scholar 

  32. Y. Jiang, et al., Am. J. Physiol. 274 (5, Pt. 1), C1273 (1998).

    Google Scholar 

  33. O. Lookin, et al., J. Physiol. Sci. 65, 89 (2015).

    Article  Google Scholar 

  34. O. Lookin, et al., Clin. Exp. Pharmacol. Physiol. 42 (11), 1198 (2015).

    Article  Google Scholar 

  35. S. J. Briston, et al., Cardiovasc. Res. 104 (2), 347 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Lookin.

Additional information

Original Russian Text © O.N. Lookin, Yu.L. Protsenko, 2016, published in Biofizika, 2016, Vol. 61, No. 1, pp. 143–157.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lookin, O.N., Protsenko, Y.L. The kinetics of cytosolic calcium in the right ventricular myocardium of guinea pigs and rats. BIOPHYSICS 61, 119–132 (2016). https://doi.org/10.1134/S0006350916010140

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350916010140

Keywords

Navigation