1.

D. Applegate and R. Kannan (1991) Sampling and integration of near log-concave functions, *Proc. 23rd ACM Symposium on the Theory of Computing*, 156–163.

2.

M. D.Atkinson (1985) Partial orders and comparison problems, *Congressus Numerantium*
**47**, 77–88.

3.

M. D.Atkinson and H. W.Chang (1985) Extensions of partial orders of bounded width, *Congressus Numerantium*
**52**, 21–35.

4.

M. D.Atkinson and H. W.Chang (1987) Computing the number of mergings with constraints, *Information Processing Letters*
**24**, 289–292.

5.

G. Brightwell and P. Winkler (1991) Counting linear extensions is #P-complete, *Proc. 23rd ACM Symposium on the Theory of Computing*, 175–181.

6.

A. Z. Broder (1986) How hard is it to marry at random? (On the approximation of the permanent), *Proc. 18th ACM Symposium on the Theory of Computing*, 50–58.

7.

M. Dyer and A. Frieze, On the complexity of computing the volume of a polyhedron, *SIAM J. Computing*, to appear.

8.

M. Dyer and A. Frieze, Computing the volume of convex bodies: a case where randomness provably helps, preprint.

9.

M. Dyer, A. Frieze, and R. Kannan (1989) A randomly polynomial time algorithm for estimating volumes of convex bodies, *Proc 21st ACM Symposium on the Theory of Computing*, 375–381.

10.

J. Feigenbaum, private communication.

11.

P. C.Fishburn and W. V.Gehrlein (1975) A comparative analysis of methods for constructing weak orders from partial orders. *J. Math. Sociology*
**4**, 93–102.

12.

M.Habib and R. H.Mohring (1987) On some complexity properties of N-free posets and posets with bounded decomposition diameter,

*Discrete Math.*
**63**, 157–182.

CrossRef13.

G. H. Hardy and E. M. Wright (1960) *An Introduction to the Theory of Numbers*, 4th Ed., Oxford University Press.

14.

M. Jerrum and A. Sinclair (1988) Conductance and the rapid mixing property for Markov chains: the approximation of the permanent resolved, *Proceedings of the 20th ACM Symposium on Theory of Computing*, 235–244.

15.

J.Kahn and M.Saks (1984) Balancing poset extensions, *Order*
**1**(2), 113–126.

16.

A.Karzanov and L.Khachiyan (1991) On the conductance of order Markov chains, *Order*
**8** (1), 7–15.

17.

L. Khachiyan, Complexity of polytope volume computation, *Recent Progress in Discrete Computational Geometry*, J. Pach ed., Springer-Verlag, to appear.

18.

H. Kierstead and W. T. Trotter, The number of depth-first searches of an ordered set, submitted.

19.

N.Linial (1986) Hard enumeration problems in geometry and combinatorics, *SIAM J. Alg. Disc. Meth.* 7(2), 331–335.

20.

L.Lovász (1986) *An Algorithmic Theory of Numbers, Graphs and Convexity*, SIAM, Philadelphia.

21.

L. Lovász and M. Simonovits (1990) The mixing rate of Markov chains, an isoperimetric inequality, and computing the volume, *Proc. 31st IEEE Symposium on Foundations of Computer Science*, 346–355.

22.

P.Matthews (1991) Generating a random linear extension of a partial order, *Annals of Probability*, **19**, 1367–1392.

23.

S.Provan and M. O.Ball (1983) On the complexity of counting cuts and of computing the probability that a graph is connected, *SIAM J. Computing*
**12**, 777–788.

24.

A.Sinclair and M.Jerrum (1989) Approximate counting, generation and rapidly mixing Markov chains, *Information and Computation*
**82**, 93–133.

25.

G. Steiner, Polynomial algorithms to count linear extensions in certain posets, *Congressus Numerantium*, to appear.

26.

G. Steiner, On counting constrained depth-first linear extensions of ordered sets, preprint.

27.

S. Toda (1989) On the computational power of PP and +P, *Proc. 30th IEEE Symposium on Foundations of Computer Science*, 514–519.

28.

L. G.Valiant (1979) The complexity of computing the permanent,

*Theoret. Comput. Sci.*
**8**, 189–201.

CrossRef29.

L. G.Valiant (1979) The complexity of enumeration and reliability problems, *SIAM J. Comput*. **8**, 410–421.

30.

P.Winkler (1982) Average height in a partially orderd set,

*Discrete Math.*
**39**, 337–341.

CrossRef