Skip to main content
Log in

Surface treatment for mitigation of hydrogen absorption and penetration into AISI 4340 steel and Inconel 718 alloy

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

It is shown that the underpotential deposition of zinc on AISI 4340 steel and Inconel 718 alloys inhibits the hydrogen evolution reaction and the degree of hydrogen ingress. In the presence of monolayer coverage of zinc on the substrate surfaces, the hydrogen evolution current densities are reduced 46% and 68% compared with the values obtained on bare AISI 4340 steel and Inconel 718 alloy, respectively. As a consequence, the underpotential deposition of zinc on AISI 4340 steel and Inconel 718 alloy membrane reduces the steady state hydrogen permeation current density by 51% and 40%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C S :

surface hydrogen concentration (mol cm−3)

D :

hydrogen diffusion coefficient (cm2 S−1)

E :

potential (V)

E pdep :

predeposition potential (V)

F :

Faraday constant (96 500 C mol−1)

i :

current density (A cm−2)

i a :

HER current density in the absence of predeposition of zinc (A cm−2)

i 0 :

exchange current density (A cm−2)

i p :

HER current density in the presence of predeposition of zinc (A cm−2)

j t :

transition hydrogen permeation current density (A cm−2)

j o :

initial hydrogen permeation current density (A cm−2)

j :

steady state hydrogen permeation current density (A cm−2)

k″:

thickness dependent absorption-adsorption constant (mol cm−3)

L :

membrane thickness (cm)

Q max :

maximum charge required for one complete layer of atoms on a surface (C cm−2)

t :

time (s)

αc :

cathodic transfer coefficient, dimensionless

θH :

hydrogen surface coverage, dimensionless

θZn :

zinc surface coverage, dimensionless

φ:

work function (eV)

τ = t D/L 2 :

(dimensionless time)

References

  1. P. Subramanyan, in ‘Comprehensive Treatise of Electrochemistry’, (edited by J. O'M Bockris, Brian E. Conway, Ernest Yeager and Ralph E. White), Plenum Press, New York (1981) 4, p. 411.

    Google Scholar 

  2. S. Bagaev, K. Pedan and V. Kudryavtsev, Zatshtita Metallov 19 (1983) 968.

    Google Scholar 

  3. V. Kudryavtsev, K. Pedan, H. Barbashkina and S. Vagramjan, ibid 9 (1973) 161.

    Google Scholar 

  4. J. J. Reilly, Z. Phys. Chem. 117 (1979) 655.

    Google Scholar 

  5. R. N. Iyer, H. W. Pickering and M. Zamanzedeh, J. Electrochem. Soc. 136 (1989) 2463.

    Google Scholar 

  6. D. M. Kolb, in ‘Advances in Electrochemistry and Electrochemical Engineering’, (edited by H. Gerischer and, C. W. Tobias), John Wiley & Sons, New York (1978) 11, p. 125.

    Google Scholar 

  7. R. R. Adzic, in ‘Advances in Electrochemistry and Electrochemical Engineering’, (edited by H. Gerischer, and C. W. Tobias), John Wiley & Sons, New York, (1982) 13, p. 159.

    Google Scholar 

  8. D. M. Kolb, M. Przasnyski and H. Gerischer, J. Electroanal. Chem. 54 (1974) 25.

    Google Scholar 

  9. D. M. Drazic and L. Z. Vorkapic, Corros. Sci. 18 (1978) 907.

    Google Scholar 

  10. A. Despic and M. Pavlovic, Electrochim. Acta 27 (1982) 1539.

    Google Scholar 

  11. S. Rashkov, C. Bozhkov, V. Kudryavtsev, K. Pedan and S. Bagaev, J. Electroanal. Chem. 248 (1988) 421.

    Google Scholar 

  12. G. Zheng, B. N. Popov and R. E. White, J. Electrochem. Soc. 140 (1993) 3153.

    Google Scholar 

  13. G. Zheng, B. N. Popov and R. E. White, ibid 141 (1994) 1220.

    Google Scholar 

  14. B. N. Popov, G. Zheng and R. E. White. To be published in Corrosion, August, (1994).

  15. G. Zheng, B. N. Popov and R. E. White, J. Electrochem. Soc. 141 (1994) 1526.

    Google Scholar 

  16. B. N. Popov, G. Zheng and R. E. White. To be published in Corros. Sci (1994).

  17. M. A. V. Devanathan and L. Stachurski, Proc. R. Soc. Lond. A270 (1962) 90.

    Google Scholar 

  18. S. Trasatti, J. Electroanal. Chem. 33 (1971) 351.

    Google Scholar 

  19. G. Adzic, J. McBreen and M. G. Chu, J. Electrochem. Soc. 128 (1981) 1691.

    Google Scholar 

  20. M. G. Chu, J. McBreen and G. Adzic, ibid 128 (1981) 2281.

    Google Scholar 

  21. B. J. Bowles, Electrochim. Acta 15 (1970) 737.

    Google Scholar 

  22. B. J. Bowles, ibid 15 (1970) 789.

    Google Scholar 

  23. R. R. Adzic, M. D. Spasojevic and A. R. Despic, ibid 24 (1979) 569.

    Google Scholar 

  24. A. Frumkin, in ‘Advances in Electrochemistry and Electrochemical Engineering’, (edited by P. Delahay and C. W. Tobias), Interscience, New York (1963) 3, p. 163.

    Google Scholar 

  25. J. O'M. Bockris, J. McBreen and L. Nanis, J. Electrochem. Soc. 112 (1965) 1027.

    Google Scholar 

  26. J. McBreen and A. M. Genshow, Proceedings of the Conference on Fundamental Aspects of Stress Corrosion Cracking, NACE Columbus (1969) p. 51.

  27. M. A. V. Devanathan, Tech. Rep. ONR/551/22/NR-036-028, Office of Naval Research (1961).

  28. N. Boes and H. Zuchner, J. Less-Common Metals 49 (1976) 223.

    Google Scholar 

  29. W. Beck, J. O'M Bockris, J. M. Breen and L. Nanis, Proc. R. Soc. Lond. A290 (1966) 220.

    Google Scholar 

  30. W. M. Robertson, Metall. Trans. 10A (1979) 489.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, G., Popov, B.N. & White, R.E. Surface treatment for mitigation of hydrogen absorption and penetration into AISI 4340 steel and Inconel 718 alloy. J Appl Electrochem 25, 212–218 (1995). https://doi.org/10.1007/BF00262958

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00262958

Keywords

Navigation