Skip to main content
Log in

Agrobacterium tumefaciens-mediated transformation of Pisum sativum L. using binary and cointegrate vectors

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Epicotyl segments and nodus expiants from etiolated seedlings of Pisum sativum were transformed using Agrobacterium tumefaciens strains GV 2260 (p35S GUS INT) and GV 3850 HPT carrying either a neomycin- or hygromycinphosphotransferase-gene as selectable markers. The transgenic character of hygromycin- or kananamycin-resistant tissue was confirmed by detection of nopaline or neomycinphosphotransferase-II- and ß-glucuronidase activity in crude extracts of resistant tissues. Up to 5 % of developing shoots from shoot proliferating nodi were regenerated via organogenesis to kanamycin-resistant plantlets. Transformation frequency in vitro was found to be influenced by expiant source, A. tumefaciens strain, pea genotype and duration of cocultivation. Acetosyringone did not increase the transformation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GUS:

ß-glucuronidase

NAA:

1-naphthyl-acetic-acid

BA:

6-benzylaminopurine

NPT-II:

neomycinphosphotransferase-II

HPT:

hygromycinphosphotransferase

References

  • Bercetche J, Chriqui D, Adam S, David C (1987) Plant Science 52: 195–210

    Google Scholar 

  • Bertoni G, Mills D (1987) Phytopathology 77: 832–835

    Google Scholar 

  • Bradford MM (1976) Anal Biochem 72: 248–254

    Article  CAS  PubMed  Google Scholar 

  • Broekart D, van Parijs R (1973) J Exp Bot 24: 820–827

    Google Scholar 

  • Byrne MC, McDonnell RE, Wright MS, Carnes MG (1987) Plant Cell Tiss Organ Cult 8: 3–15

    Google Scholar 

  • Chabaud M, Passiatore JE, Cannon F, Buchanan-Wollaston V (1988) Plant Cell Rep 7: 512–516

    Google Scholar 

  • Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M, Leemans J (1985) Nucleic Acids Res 13: 4777–4788

    Google Scholar 

  • Eapen S, Köhler, F, Gerdemann M, Schieder O (1987) Theor Appl Genet 75: 201–210

    Google Scholar 

  • Gasser CS, Fraley RT (1989) Science 244: 1293–1299

    Google Scholar 

  • Griga M, Tejklova E, Novak FJ, Kubalakova M (1986) Plant Cell Tiss Organ Cult 6: 95–104

    Google Scholar 

  • Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB. Fraley RT, Horsch RB (1988) Biotechnology 6: 915–921

    Google Scholar 

  • Hobbs SLA, Jackson JA, Manon JD (1989) Plant Cell Rep 8: 274–277

    Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) Nature 303: 179–180

    CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton M-D (1986) J Bacteriol 168: 1291–1301

    CAS  PubMed  Google Scholar 

  • Hussey G, Johnson RD, Warren S (1989) Protoplasma 148: 101–105

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) EMBO J 6: 3901–3907

    CAS  PubMed  Google Scholar 

  • Kodama A (1975) Japan J Genet 50: 291–299

    Google Scholar 

  • Kurkdijan A, Manigault P, Beardsley R (1969) Can J Bot 47: 803–808

    Google Scholar 

  • Kysely W, Myers JR, Lazzeri PA, Collins GB, Jacobsen H-J (1987) Plant Cell Rep 6: 305–308

    Google Scholar 

  • Lehminger-Mertens R, Jacobsen H-J (1989) Plant Cell Rep 8: 379–382

    Google Scholar 

  • Lopatin MI (1936) Microbiologia (Moskwa) 5: 716–724

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular Cloning: a laboratory manual, Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Mariotti D, Fontana GS, Santini L (1989) J. Genet & Breed 43: 77–82

    Google Scholar 

  • McHughen A, Jordan MC (1989) Plant Cell Rep 7: 611–61

    Google Scholar 

  • Otten LABM, Schilperoort RA (1978) Biochim Biophys Acta 527: 497–500

    Google Scholar 

  • Otten L, Piotrowiak G, Hooykaas PJJ, Dubois M, Szegedi E, Schell J (1985) Mol Gen Genet 199: 189–193

    Google Scholar 

  • Parrott WA, Hoffman LM, Hildebrand DF, Williams EG, Collins GB (1989) Plant Cell Rep 7: 615–617

    CAS  Google Scholar 

  • Polito VS, McGranahan G, Pinney K, Leslie C (1989) Plant Cell Rep 8: 219–221

    Google Scholar 

  • Puonti-Kaerlas J, Stabel P, Eriksson T (1989) Plant Cell Rep 8: 321–324

    Google Scholar 

  • Reiss B, Sprengel R, Will H, Schaller H (1984) Gene 30: 211–218

    Google Scholar 

  • Smith EF, Townsend CO (1907) Science 25: 671–673

    Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Nature 318: 624–629

    Google Scholar 

  • Vancanneyt G, Schmidt R, O'Connor-Sanchez A, Willmitzer L, Rocha-Sosa (1990) Mol Gen Genet 220: 245–250

    CAS  PubMed  Google Scholar 

  • Zambryski P, Joos H, Genetello C, Leemans J, van Montagu M, Schell J (1983) EMBO J. 2: 2143–2150

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Lörz

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Kathen, A., Jacobsen, HJ. Agrobacterium tumefaciens-mediated transformation of Pisum sativum L. using binary and cointegrate vectors. Plant Cell Reports 9, 276–279 (1990). https://doi.org/10.1007/BF00232301

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232301

Keywords

Navigation