Skip to main content
Log in

The vertical sulfur dioxide distribution at the tropopause level

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

In 1978–1980 nine aircraft flights to an altitude of up to 15 km were made over western Europe. Sulfur dioxide was measured with a sensitive chemiluminescence method consisting of separate sampling and analysis stages and application of a wet chemical filter procedure (detection limit: 8 pptv SO2).

The measurements performed in the upper troposphere and lower stratosphere lead to some unexpected results: (a) the meteorological conditions at the tropopause level have an important influence on the observed SO2 mixing ratio; (b) between the 500 mb and the actual tropopause level the SO2 mixing ratio is found to be <100 pptv, and weak vertical gradients of SO2 suggest only a small flux of tropospheric SO2 into the stratosphere; (c) increasing SO2 mixing ratios within the first kilometers of the stratosphere give strong support to a stratospheric source of SO2.

In the light of improved one-dimensional models considering the vertical distribution of stratospheric sulfur compounds (Crutzen, 1981; Turco et al. 1981) it can be shown that the oxidation of organic sulfur compounds (e.g., OCS, CS2) seems to be a stratospheric source of SO2. Furthermore, the flux calculations based on the SO2 mixing ratios measured at the tropopause level indicate that the contribution of tropospheric (man-made) SO2 to the stratospheric aerosol layer is of only minor importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anjea, V. P., Anjea, A. P., and Adams, D. F., 1982, Biogenic sulfur compounds and the global sulfur cycle. J. Air Pollut. Control Assoc. 32, 803–806.

    Google Scholar 

  • Bandy, A. R., Maroulis, P. J., Shalaby, L., and Wilner, L. A., 1983, Evidence for a short tropospheric residence time for carbon disulfide, Geophys. Res. Lett. 8, 1180–1183.

    Google Scholar 

  • Baulch, D. L., Cox, R. A., Hampson, R. F., Jr., Kerr, J. A., Troe, J., and Watson, R. T., 1980, Evaluated kinetic and photochemical data for atmospheric chemistry, J. Phys. Chem. Ref. Data 9, (2).

  • Cadle, R. D., 1980, A comparison of volcanic with other fluxes of atmospheric trace gas constituents, Rev. Geophys. Space Phys. 18, 746–752.

    Google Scholar 

  • Castleman, A. W., Munkelwitz, H. R., and Manowitz, B., 1974, Isotopic studies of the sulfur component of the stratospheric aerosol layer, Tellus 26, 222–234.

    Google Scholar 

  • Crutcher, H. L. and Davies, O. M., 1969, U.S. Navy marine climatic atlas of the world 8, NAVAIR 50-1C-54, Chief of Naval Operations, Washington, D.C.

  • Crutzen, P. J., 1976, The possible importance of CSO for the sulfate layer of the stratosphere, Geophys. Res. Lett. 3, 73–76.

    Google Scholar 

  • Crutzen, P. J., Heidt, L. E., Krasnec, J. P., Pollock, W. H., and Seiler, W., 1979, Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl and COS, Nature 282, 253–256.

    Google Scholar 

  • Crutzen, P. J., 1981, On the vertical distribution of gaseous sulfur compounds, unpublished manuscript.

  • Danielsen, E. F., 1959, The laminar structure of the atmosphere and its relation to the concept of a tropopause, Arch Meteorol. Geophys. Biokl., Ser. A 11, 293–332.

    Google Scholar 

  • Friend, J. P., Leifer, R., and Trichon, M., 1973, On the formation of stratospheric aerosol, J. Atmos. Sci. 30, 465–479.

    Google Scholar 

  • Georgii, H.-W. and Meixner, F. X., 1980, Measurements of the tropospheric and stratospheric SO2 distribution, J. Geophys. Res. 85, 7433–7438.

    Google Scholar 

  • Harker, A. B., 1975, The formation of sulfate in the stratosphere through the gas phase oxidation of sulfur dioxide, J. Geophys. Res. 80, 3399–3401.

    Google Scholar 

  • Harrison, H. and Larson, T., 1974, The oxidation of SO2 in the stratosphere, J. Geophys. Res. 79, 3095–3097.

    Google Scholar 

  • Hofmann, D. J., Rosen, J. M., Kiernan, J. M., and Laby, J., 1976, Stratospheric aerosol measurements IV: Global time variations of the aerosol burden and source considerations, J. Atmos. Sci. 33, 1782–1788.

    Google Scholar 

  • Inn, E. C. Y. and Vedder, J. F., 1981, Measurements of stratospheric sulfur constituents, Geophys. Res. Lett. 8, 5–8.

    Google Scholar 

  • Iyer, R. S. and Rowland, F. S., 1980, A significant upper limit for the rate of formation of OCS from the reaction of OH with CS2, Geophys. Res. Lett. 7, 797–800.

    Google Scholar 

  • Jaeschke, W., 1978, New methods for the analysis of SO2 and H2S in remote areas and their application to the atmosphere, Atmos. Environ. 12, 715–721.

    Google Scholar 

  • Jaeschke, W., Georgii, H.-W., and Schmitt, R., 1976, Preliminary results of stratospheric SO2 measurements, Geophys. Res. Lett. 3, 517–519.

    Google Scholar 

  • Junge, C. E., Chagnon, C. W., and Manson, J. E., 1961, Stratospheric aerosols, J. Meteorol. 18, 81–108.

    Google Scholar 

  • Junge, C. E., 1966, The formation of the stratospheric aerosol layer, Tellus, 18, 685.

    Google Scholar 

  • Junge, C. E., 1974, Sulfur budget of the stratospheric aerosol layer, Proc. of the IAMAP Conf. on Structure, Composition and General Circulation of the Upper and Lower Atmospheres, Vol. 1, Melbourne, January 1974, pp. 85–97.

  • Kurylo, M. J., 1978, Flash photolysis resonance fluorescence investigation of the reactions of OH radicals with OCS and CS2, Chem. Phys. Lett. 58, 238–242.

    Google Scholar 

  • Lazrus, A. L. and Gandrud, B. W., 1974, Stratospheric sulfate aerosol, J. Geophys. Res. 79, 3424–3431.

    Google Scholar 

  • Meixner, F. X., 1981, PhD dissertation, J. W. Goethe University, Frankfurt am Main, FRG.

  • Meixner, F. X., and Jaeschke, W. A., 1981, The detection of low atmospheric SO2 concentrations with a chemiluminescence technique, Int. J. Environ. Anal. Chem. 10, 51–67.

    Google Scholar 

  • Meixner, F. X., Geogii, H.-W., Ockelmann, G., Jäger, H., and Reiter, R., 1981, The arrival of the Mount St Helens eruption cloud over Europe, Geophys. Res. Lett. 8, 163–166.

    Google Scholar 

  • Meixner, F. X., 1983, A case study of stratospheric sulphur dioxide influx into the troposphere, CACGP-Conference on Tropospheric Chemistry, 28 August–2 September 1983, Oxford, England.

  • Moortgart, G. J., and Junge, C., 1977, The role of SO2 oxidation for the background stratospheric sulfate layer in the light of new reaction data, Pageoph 115, 769–774.

    Google Scholar 

  • NASA, 1981, Chemical kinetic and photochemical data for use in stratospheric modelling evaluation, No. 4, NASA panel for data evaluation, Jan. 15, 1981, NASA Jet Prop. Lab., Calif. Inst. Technology, Pasadena, CA, USA.

    Google Scholar 

  • Peyton, T. O., Steele, R. V., and Mabey, W. R., 1976, Carbon disulfide, carbonyl sulfide: Literature review and environmental assessment, Stanfort Research Institute Report 68-01-2940, 57 pp.

  • Ravinshankra, A. R., Kreutter, N. M., Shah, R. C., and Wine, P. H., 1980, Rate of reaction of OH with COS, Geophys. Res. Lett. 7, 861–864.

    Google Scholar 

  • Reiter, E. R., 1972, Atmospheric transport processes, part 3: Hydrodynamic tracers, U.S. Atomic Energy Commission, Office of Information Services, TID-25731, National Technical Information Service, U.S. Department of Commerce, Springfield, VA, USA.

    Google Scholar 

  • Reiter, E., 1975, Stratospheric-tropospheric exchange processes, Rev. Geophys. Space Phys. 13, 459–474.

    Google Scholar 

  • Shapiro, M. A., Reiter, E. R., Cadle, R. D., and Sedlacek, W. A., 1980, Vertical mass- and trace constituent transports in the vicinity of jet streams, Arch. Meteorol. Geophys. Biokl., Ser. B., 28, 193–206.

    Google Scholar 

  • Specker, H. and Kaiser, H., 1956, Bewertung und Vergleich von Analysenverfahren, Fres. Z. Anal. Chem. 149, 46–66.

    Google Scholar 

  • Stauff, J. and Jaeschke, W., 1975, A chemiluminescence technique for measuring atmospheric trace concentrations of SO2, Atmos. Environ. 9, 1038–1039.

    Google Scholar 

  • Torres, A. L., Maroulis, P. J., and Bandy, A. R., 1980, Atmospheric OCS measurements on Project GAMETAG, J. Geophys. Res. 85, 7357–7360.

    Google Scholar 

  • Turco, R. P., Whitten, R. C., Toon, O. B., Inn, E. C. Y., and Hamill, P., 1981, Stratospheric hydroxyl radical concentrations: New limitations suggested by observations of gaseous and particulate sulfur, J. Geophys. Res. 86, 1129–1139.

    Google Scholar 

  • Turco, R. P., Whitten, R. C., and Toon, O. B., 1982, Stratospheric aerosols: Observation and theory, Rev. Geophys. Space Phys. 20, 233–279.

    Google Scholar 

  • U.S. Standard Atmosphere 1976: NOAA-S/T 76–1562, U.S. Government Printing Office, Washington, D.C. 20402, USA.

    Google Scholar 

  • Whitten, R. C., Toon, O. B., and Turco, R. P., 1980, The stratospheric sulfate aerosol layer: Processes, models, observations, and simulations, Pageoph 118, 87–127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meixner, F.X. The vertical sulfur dioxide distribution at the tropopause level. J Atmos Chem 2, 175–189 (1984). https://doi.org/10.1007/BF00114130

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00114130

Key words

Navigation