Skip to main content
Log in

Change in the Air Composition upon the Transition from the Troposphere to the Stratosphere

  • OPTICS OF CLUSTERS, AEROSOLS, AND HYDROSOLES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Airborne sensing data are used to study the change in the air composition upon the transition from the troposphere to the stratosphere. The distribution of seven gases and the size spectrum and chemical composition of aerosol particles are analyzed. It is shown that when crossing the tropopause, the concentrations of H2О, CO, and CH4 sharply decrease, while the concentrations of О3 and NO2 and the aerosol particle number density, to the contrary, increase. Above the tropopause, Si predominates in the elemental composition and \(\text{SO}_{4}^{{2 - }}\) prevails in the ionic composition. In the troposphere, terrigenous elements Al, Cu, and Fe predominate, while in the ionic composition the prevailing set of several ions varies from one region to another. Noticeable differences in the size spectrum of particles are revealed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Z. M. Makhover, Climatology of the Tropopause (Gidrometeoizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  2. T. Trickl, H. Vogelmann, H. Giehl, H.-E. Scheel, M. Sprenger, and A. Stohl, “How stratospheric are deep stratospheric intrusions?,” Atmos. Chem. Phys. 14 (18), 9941–9961 (2014).

    Article  ADS  Google Scholar 

  3. T. Trickl, N. Bartsch-Ritter, H. Eisele, M. Furger, R. Mucke, M. Sprenger, and A. Stohl, “High-ozone layers in the middle and upper troposphere above Central Europe: Potential import from the stratosphere along the subtropical jet stream,” Atmos. Chem. Phys. 11 (17), 9343–9366 (2011).

    Article  ADS  Google Scholar 

  4. A. A Kukoleva, “Estimation of ozone fluxes across the tropopause within high frontal zones in the Northern Hemisphere,” Izv., Atmos. Ocean. Phys. 38 (3), 333–343 (2002).

    Google Scholar 

  5. A. R. Ivanova, “Stratosphere-troposphere exchange and its specific features at extratropical latitudes,” Rus. Meteorol. Hydrol. 41 (3), 170–185 (2016).

    Article  Google Scholar 

  6. A. A. Krivolutsky and A. A. Kukoleva, “Results of Russian investigations into the middle atmosphere (2011–2014),” Izv., Atmos. Ocean. Phys. 52 (5), 497–511 (2016).

    Article  Google Scholar 

  7. A. C. Boothe and C. R. Homeyer, “Global large-scale stratosphere-troposphere exchange in modern reanalyses,” Atmos. Chem. Phys. 17 (9), 5537–5559 (2017).

    Article  ADS  Google Scholar 

  8. T. Runde, M. Dameris, H. Garny, and D. E. Kinnison, “Classification of stratospheric extreme events according to their downward propagation to the troposphere,” Geophys. Rev. Lett. 43 (12), 6665–6672 (2016).

    Article  ADS  Google Scholar 

  9. M. Mihalikova, S. Kirkwood, J. Arnault, and D. Mikhaylova, “Observation of a tropopause fold by MARA VHF wind-profiler radar and ozonesonde at Wasa, Antarctica: Comparison with ECMWF analysis and a WRF model simulation,” Ann. Geophys. 30 (9), 1411–1421 (2012).

    Article  ADS  Google Scholar 

  10. M. Mihalikova and S. Kirkwood, “Tropopause fold occurrence rates over the Antarctic Station Troll (75 S, 2.5 E),” Ann. Geophys. 31 (4), 591–598 (2013).

    Article  ADS  Google Scholar 

  11. K. Weigel, L. Hoffmann, G. Gunther, F. Khosrawi, F. Olschewski, P. Preusse, R. Spang, F. Stroh, and M. Riese, “A stratospheric intrusion at the subtropical jet over the Mediterranean Sea: Air-borne remote sensing observations and model results,” Atmos. Chem. Phys. 12 (8), 8423–8438 (2012).

    Article  ADS  Google Scholar 

  12. P. Pisoft, P. Sacha, L. M. Polvani, J. A. Anel, L. de la Torre, R. Eichinger, U. Foelsche, P. Huszar, C. Jacobi, J. Karlicky, A. Kuchar, J. Miksovsky, M. Zak, and H. E. Rieder, “Stratospheric contraction caused by increasing greenhouse gases,” Environ. Res. Lett. 16 (6), 064038 (2021).

    Article  ADS  Google Scholar 

  13. M. B. Follette-Cook, R. D. Hudson, and G. E. Nedoluha, “Classification of Northern Hemisphere stratospheric ozone and water vapor profiles by meteorological regime,” Atmos. Chem. Phys. 9 (16), 5989–6003 (2009).

    Article  ADS  Google Scholar 

  14. W. J. Collins, R. G. Derwent, B. Garnier, C. E. Johnson, M. G. Sanderson, and D. S. Stevenson, “Effect of stratosphere–troposphere exchange on the future tropospheric ozone trend,” J. Geophys. Res. 108 (D12), 8528 (2003).

    Article  Google Scholar 

  15. L. Geng, L. T. Murray, L. J. Mickley, P. Lin, Q. Fu, A. J. Schauer, and B. Alexander, “Isotopic evidence of multiple controls on atmospheric oxidants over climate transitions,” Nature 546 (7656), 133–137 (2017).

    Article  ADS  Google Scholar 

  16. P. J. Crutzen, “Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?,” Clim. Change 77, 211–219 (2006).

    Article  ADS  Google Scholar 

  17. A. R. Ravishankara, “Water vapor in the lower stratosphere,” Science 337 (6096), 809–810 (2012).

    Article  ADS  Google Scholar 

  18. J. G. Anderson, D. M. Wilmouth, J. B. Smith, and D. S. Sayres, “UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor,” Science 337 (6096), 835–839 (2012).

    Article  ADS  Google Scholar 

  19. R. Ueyama, E. J. Jensen, L. Pfister, G. S. Diskin, T. P. Bui, and J. M. Dean-Day, “Dehydration in the tropical tropopause layer: A case study for model evaluation using aircraft observations,” J. Geophys. Res. Atmos. 119 (9), 5299–5316 (2014).

    Article  ADS  Google Scholar 

  20. M. R. Schoeberl, H. B. Selkirk, H. Vomel, and A. R. Douglass, “Sources of seasonal variability in tropical upper troposphere and lower stratosphere water vapor and ozone: Inferences from the Ticosonde data set at Costa Rica,” J. Geophys. Res. Atmos. 120 (18), 9684–9701 (2015).

    Article  ADS  Google Scholar 

  21. C. Rolf, A. Afchine, H. Bozem, B. Buchholz, V. Ebert, T. Guggenmoser, P. Hoor, P. Konopka, E. Kretschmer, S. Muller, H. Schlager, N. Spelten, O. Suminska-Ebersoldt, J. Ungermann, A. Zahn, and M. Kramer, “Transport of Antarctic stratospheric strongly dehydrated air into the troposphere observed during the HALO-ESMVal campaign 2012,” Atmos. Chem. Phys. 15 (16), 9143–9158 (2015).

    Article  ADS  Google Scholar 

  22. V. F. Sofieva, J. Tamminen, E. Kyrola, T. Mielonen, P. Veefkind, B. Hassler, and G. E. Bodeker, “A novel tropopause-related climatology of ozone profiles,” Atmos. Chem. Phys. 14 (1), 283–299 (2014).

    Article  ADS  Google Scholar 

  23. I. Petropavlovskikh, E. Ray, S. M. Davis, K. Rosenlof, G. Manney, R. Shetter, S. R. Hall, K. Ullmann, L. Pfister, J. Hair, M. Fenn, M. Avery, and A. M. Thompson, “Low ozone bubbles observed in the tropical tropopause layer during the TC4 Campaign in 2007,” J. Geophys. Res. 115, J16 (2010).

    Article  Google Scholar 

  24. P. Konopka and L. L. Pan, “On the mixing-driven formation of the extratropical transition layer (ExTL),” J. Geophys. Res. 117, D18301 (2012).

    Article  ADS  Google Scholar 

  25. B. Berchet, J.-D. Paris, G. Ancellet, K. S. Law, A. Stohl, Ph. Nedelec, M. Yu. Arshinov, B. Belan, and Ph. Ciais, “Tropospheric ozone over Siberia in spring 2010: Remote influences and stratospheric intrusion,” Tellus B 65, 19688 (2013).

    Article  ADS  Google Scholar 

  26. C. R. Homeyer, K. P. Bowman, L. L. Pan, E. L. Atlas, R.-S. Gao, and T. L. Campos, “Dynamical and chemical characteristics of tropospheric intrusions observed during START08,” J. Geophys. Res. 116, D06111 (2011).

    ADS  Google Scholar 

  27. G. G. Anokhin, P. N. Antokhin, M. Yu. Arshinov, V. E. Barsuk, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, V. S. Kozlov, M. V. Morozov, M. V. Panchenko, I. E. Penner, D. A. Pestunov, G. P. Sikov, D. V. Simonenkov, D. S. Sinitsyn, G. N. Tolmachev, D. V. Filippov, A. V. Fofonov, D. G. Chernov, V. S. Shamanaev, and V. P. Shmargunov, “OPTIK Tu-134 aicraft laboratory,” Opt. Atmos. Okeana 24 (9), 805–816 (2011).

    Google Scholar 

  28. V. I. Otmakhov, E. V. Petrova, Z. I. Otmakhova, and T. V. Lapova, “Chemical and atomic–emission spectral analysis of atmospheric and industrial aerosols for the presence of base metals,” Atmos. Ocean. Opt. 12 (4), 327–330 (1999).

    Google Scholar 

  29. B. D. Belan, G. A. Ivlev, A. V. Kozlov, T. M. Rasskazchikova, D. V. Simonenkov, and G. N. Tolmachev, “Typisation of the chemical composition of the tropospheric aerosol of the south of Western Siberia by the air mass,” Proc. SPIE—Int. Soc. Opt. Eng. 10833, 108338 (2018).

  30. L. P. Golobokova, T. V. Khodzher, O. N. Izosimova, P. N. Zenkova, A. O. Pochyufarov, O. I. Khuriganowa, N. A. Onishyuk, I. I. Marinayte, V. V. Polkin, V. F. Radionov, S. M. Sakerin, A. P. Lisitzin, and V. P. Shevchenko, “Chemical composition of atmospheric aerosol in the Arctic region and adjoining seas along the routes of marine expeditions in 2018–2019,” Atmos. Oceanic Opt. 33 (5), 480–489 (2020).

    Article  ADS  Google Scholar 

  31. L. P. Golobokova, T. V. Khodzher, O. I. Khuriganova, I. I. Marinayte, N. A. Onishchuk, P. Rusanova, and V. L. Potemkin, “Variability of chemical properties of the atmospheric aerosol above Lake Baikal during large wildfires in Siberia,” Atmosphere 11 (11), 1230 (2020).

    Article  ADS  Google Scholar 

  32. A. R. Ivanova, “The tropopause: Variety of definitions and modern approaches to identification,” Rus. Meteorol. Hydrol. 38 (12), 808–817 (2013).

    Article  Google Scholar 

  33. M. J. Prather, X. Zhu, Q. Tang, J. Hsu, and J. L. Neu, “An atmospheric chemist in search of the tropopause,” J. Geophys. Res. 116, D04306 (2011).

    ADS  Google Scholar 

  34. A. R. Ivanova, “The tropopause slope as a characteristic of its deformation,” Rus. Meteorol. Hydrol. 36 (2), 82–90 (2011).

    Article  Google Scholar 

  35. S. P. Khromov, Foundations for Synoptic Meteorology (Gidrometeoizdat, Leningrad, 1948) [in Russian].

    Google Scholar 

  36. L. T. Matveev, General Meteorology Course. Atmospheric Physics (Gidrometeoizdat, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  37. E. E. Remsberg, “Methane as a diagnostic tracer of changes in the Brewer–Dobson circulation of the stratosphere,” Atmos. Chem. Phys. 15 (7), 3739–3754 (2015).

    Article  ADS  Google Scholar 

  38. H. Bozem, P. Hoor, D. Kunkel, F. Köllner, J. Schneider, A. Herber, H. Schulz, W. R. Leaitch, A. A. Aliabadi, M. D. Willis, J. Burkart, and J. P. D. Abbatt, “Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements,” Atmos. Chem. Phys. 19 (23), 15 049–15 071 (2019).

    Article  Google Scholar 

  39. H. Oelhaf, B.-M. Sinnhuber, W. Woiwode, H. Bonisch, H. Bozem, A. Engel, A. Fix, F. Friedl-Vallon, J.‑U. Grooß, P. Hoor, S. Johansson, T. Jurkat-Witschas, S. Kaufmann, M. Kramer, J. Krause, E. Kretschmer, D. Lorks, A. Marsing, J. Orphal, K. Pfeilsticker, M. Pitts, L. Poole, P. Preusse, M. Rapp, M. Riese, Ch. Rolf, J. Ungermann, Ch. Voigt, C. M. Volk, M. Wirth, A. Zahn, and H. Ziereis, “POLSTRACC,” BAMS 100 (12), 2634–2664 (2019).

    Article  ADS  Google Scholar 

  40. A. Volz, D. H. Enhalt, and R. G. Derwent, “Seasonal and latitudinal variations of 14CO and the tropospheric concentration of OH radicals,” J. Geophys. Res. 86 (5), 5163–5171 (1981).

    Article  ADS  Google Scholar 

  41. D. H. Enhalt, “The atmospheric cycle of methan,” Tellus 26 (1), 58–70 (1974).

    Article  ADS  Google Scholar 

  42. Q. Liang, J. M. Rodriguez, A. R. Douglass, J. H. Crawford, J. R. Olson, E. Apel, H. Bian, D. R. Blake, W. Brune, M. Chin, P. R. Colarco, A. Silva, G. S. Diskin, B. N. Duncan, L. G. Huey, D. J. Knapp, D. D. Montzka, J. E. Nielsen, S. Pawson, D. D. Riemer, A. J. Weinheimer, and A. Wisthaler, “Reactive nitrogen, ozone and ozone production in the Arctic troposphere and the impact of stratosphere-troposphere exchange,” Atmos. Chem. Phys. 11 (24), 13 181–13 199 (2011).

    Article  Google Scholar 

  43. C. Varotsos, J. Christodoulakis, C. Tzanis, and A. P. Cracknell, “Signature of tropospheric ozone and nitrogen dioxide from space: A case study for Athens, Greece,” Atmos. Environ. 89, 721–730 (2014)

    Article  ADS  Google Scholar 

  44. L. S. Ivlev, Chemical Composition and Structure of Atmospheric Aerosols (Leningrad State Univ., Leningrad, 1982) [in Russian].

    Google Scholar 

  45. N. P. Shakina, I. N. Kuznetsova, and A. R. Ivanova, “Case studies of stratospheric intrusions associated with increased radioactivity in the surface air,” Rus. Meteorol. Hydrol., No. 2, 38–43 (2000).

  46. H.-M. Cho, Y. -L. Hong, and G. Kim, “Atmospheric depositional fluxes of cosmogenic 35S and 7Be: Implications for the turnover rate of sulfur through the biosphere,” Atmos. Environ. 45 (25), 4230–4234 (2011).

    Article  ADS  Google Scholar 

  47. T. Jurkat, S. Kaufmann, Ch. Voigt, D. Schauble, Ph. Jeßberger, and H. Ziereis, “The airborne mass spectrometer AIMS—Part 2: Measurements of trace gases with stratospheric or tropospheric origin in the UTLS,” Atmos. Meas. Tech. 9 (4), 1907–1923 (2016).

    Article  Google Scholar 

  48. J. Schneider, R. Weigel, T. Klimach, A. Dragoneas, O. Appel, A. Hünig, S. Molleker, F. Köllner, H.‑Ch. Clemen, O. Eppers, P. Hoppe, P. Hoor, Ch. Mahnke, M. Krämer, Ch. Rolf, J.-U. Grooß, A. Zahn, F. Obersteiner, F. Ravegnani, A. Ulanovsky, H. Schlager, M. Scheibe, G. S. Diskin, J. P. Di Gangi, J. B. Nowak, M. Zöger, and S. Borrmann, “Aircraft-based observation of meteoric material in lower-stratospheric aerosol particles between 15 and 68_N,” Atmos. Chem. Phys. 21 (2), 989–1013 (2021).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study is based on the data obtained with the Tu-134 Optik flying laboratory being a part of the Atmosfera Common Use Center.

Funding

The work is supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-934).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Belan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antokhin, P.N., Arshinova, V.G., Arshinov, M.Y. et al. Change in the Air Composition upon the Transition from the Troposphere to the Stratosphere. Atmos Ocean Opt 34, 567–576 (2021). https://doi.org/10.1134/S1024856021060300

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021060300

Keywords:

Navigation