Skip to main content
Log in

Necessity and Risks of Arterial Blood Sampling in Healthy Volunteer Studies

  • Current Opinion
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Arterial blood sampling is necessary when drugs such as the fast-acting opioid analgesic remifentanil exhibit relevant differences between arterial and venous blood concentrations. Arterial cannulation is generally considered to be clinically safe and has thus become a standard procedure in pharmacokinetic–pharmacodynamic assessments. However, rare cases of arterial occlusions have to be considered in risk–benefit assessments of arterial sampling in pharmacokinetic studies, especially when including healthy volunteers. In an actual case, arterial occlusion requiring surgical repair was caused by a factor V Leiden thrombophilia associated genetic variant F5 1691G>A (rs6025) and aggravated by a hypoplastic radial artery. Neither risk factor had been identified prior to enrolment by routine laboratory tests such as the prothrombin time (international normalized ratio), partial thromboplastin time and the clinical Allen’s test of arterial function. Re-assessment of the necessity of arterial sampling showed that none of the potential alternatives, target concentrations of computerized infusions or venous concentrations during non-steady-state and steady-state conditions could provide the arterial concentrations. Relying on venous concentrations may result in erroneous pharmacodynamic parameters. Accurate pharmacokinetic–pharmacodynamic studies relying on precisely measured blood concentrations require serial sampling techniques during both steady-state and non-steady-state conditions. However, as illustrated by the presented case, incidents involving the generally safe procedure of arterial sampling are possible, although rare. To further minimize the risks, screening of subjects for prothrombotic risks and careful assessment of the suitability of the artery should be considered in pharmacokinetic studies requiring arterial cannulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hermann DJ, Egan TD, Muir KT. Influence of arteriovenous sampling on remifentanil pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 1999;65(5):511–8.

    Article  PubMed  CAS  Google Scholar 

  2. Rentsch KM, Kullak-Ublick GA, Reichel C, Meier PJ, Fattinger K. Arterial and venous pharmacokinetics of intravenous heroin in subjects who are addicted to narcotics. Clin Pharmacol Ther. 2001;70(3):237–46.

    Article  PubMed  CAS  Google Scholar 

  3. Chiou WL. The phenomenon and rationale of marked dependence of drug concentration on blood sampling site: implications in pharmacokinetics, pharmacodynamics, toxicology and therapeutics (part II). Clin Pharmacokinet. 1989;17(4):275–90.

    Article  PubMed  CAS  Google Scholar 

  4. Chiou WL. The phenomenon and rationale of marked dependence of drug concentration on blood sampling site: implications in pharmacokinetics, pharmacodynamics, toxicology and therapeutics (part I). Clin Pharmacokinet. 1989;17(3):175–99.

    Article  PubMed  CAS  Google Scholar 

  5. Gumbleton M, Oie S, Verotta D. Pharmacokinetic–pharmacodynamic (PK–PD) modelling in non-steady-state studies and arterio-venous drug concentration differences. Br J Clin Pharmacol. 1994;38(5):389–400.

    Article  PubMed  CAS  Google Scholar 

  6. Tuk B, Danhof M, Mandema JW. The impact of arteriovenous concentration differences on pharmacodynamic parameter estimates. J Pharmacokinet Biopharm. 1997;25(1):39–62.

    Article  PubMed  CAS  Google Scholar 

  7. Slogoff S, Keats AS, Arlund C. On the safety of radial artery cannulation. Anesthesiology. 1983;59(1):42–7.

    Article  PubMed  CAS  Google Scholar 

  8. Scheer B, Perel A, Pfeiffer UJ. Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care. 2002;6(3):199–204.

    Article  PubMed  Google Scholar 

  9. Noh GJ, Kim KM, Jeong YB, Jeong SW, Yoon HS, Jeong SM, et al. Electroencephalographic approximate entropy changes in healthy volunteers during remifentanil infusion. Anesthesiology. 2006;104(5):921–32.

    Article  PubMed  CAS  Google Scholar 

  10. Egan TD, Kern SE, Muir KT, White J. Remifentanil by bolus injection: a safety, pharmacokinetic, pharmacodynamic, and age effect investigation in human volunteers. Br J Anaesth. 2004;92(3):335–43.

    Article  PubMed  CAS  Google Scholar 

  11. Egan TD, Lemmens HJ, Fiset P, Hermann DJ, Muir KT, Stanski DR, et al. The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers. Anesthesiology. 1993;79(5):881–92.

    Article  PubMed  CAS  Google Scholar 

  12. Egan TD, Minto CF, Hermann DJ, Barr J, Muir KT, Shafer SL. Remifentanil versus alfentanil: comparative pharmacokinetics and pharmacodynamics in healthy adult male volunteers [published erratum appears in Anesthesiology. 1996 Sep; 85(3):695]. Anesthesiology. 1996;84(4):821–33.

    Article  PubMed  CAS  Google Scholar 

  13. Minto CF, Schnider TW, Egan TD, Youngs E, Lemmens HJ, Gambus PL, et al. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I: model development. Anesthesiology. 1997;86(1):10–23.

    Article  PubMed  CAS  Google Scholar 

  14. Bright E, Baines DB, French BG, Cartmill TB. Upper limb amputation following radial artery cannulation. Anaesth Intensive Care. 1993;21(3):351–3.

    PubMed  CAS  Google Scholar 

  15. Lötsch J, Darimont J, Skarke C, Zimmermann M, Hummel T, Geisslinger G. Effects of the opioid remifentanil on olfactory function in healthy volunteers. Life Sci. 2001;69(19):2279–85.

    Article  PubMed  Google Scholar 

  16. Conroy JL, Fang C, Gu J, Zeitlin SO, Yang W, Yang J, et al. Opioids activate brain analgesic circuits through cytochrome P450/epoxygenase signaling. Nat Neurosci. 2010;13(3):284–6.

    Article  PubMed  CAS  Google Scholar 

  17. Feierman DE, Lasker JM. Metabolism of fentanyl, a synthetic opioid analgesic, by human liver microsomes: role of CYP3A4. Drug Metab Dispos. 1996;24(9):932–9.

    PubMed  CAS  Google Scholar 

  18. Egan TD. Remifentanil pharmacokinetics and pharmacodynamics: a preliminary appraisal. Clin Pharmacokinet. 1995;29(2):80–94.

    Article  PubMed  CAS  Google Scholar 

  19. Allen EV. Thromboangiitis obliteransmethods of diagnosis of chronic occlusive arterial lesions distal to the wrist with illustrative cases. Am J Med Sci. 1929;2:1–8.

    Google Scholar 

  20. De Stefano V, Rossi E, Paciaroni K, Leone G. Screening for inherited thrombophilia: indications and therapeutic implications. Haematologica. 2002;87(10):1095–108.

    PubMed  Google Scholar 

  21. Kujovich JL, Factor V. Leiden thrombophilia. Genet Med. 2011;13(1):1–16.

    Article  PubMed  CAS  Google Scholar 

  22. Shafer SL, Varvel JR, Aziz N, Scott JC. Pharmacokinetics of fentanyl administered by computer-controlled infusion pump. Anesthesiology. 1990;73:1091–102.

    Article  PubMed  CAS  Google Scholar 

  23. Egan TD. The clinical pharmacology of remifentanil: a brief review. J Anesth. 1998;12(4):194–204.

    Google Scholar 

  24. Jacobs JR, Nath PA. Compartment model to describe peripheral arterial-venous drug concentration gradients with drug elimination from the venous sampling compartment. J Pharm Sci. 1995;84(3):370–5.

    Article  PubMed  CAS  Google Scholar 

  25. Lötsch J, Skarke C, Wieting J, Oertel BG, Schmidt H, Brockmoller J, et al. Modulation of the central nervous effects of levomethadone by genetic polymorphisms potentially affecting its metabolism, distribution, and drug action. Clin Pharmacol Ther. 2006;79(1):72–89.

    Article  PubMed  Google Scholar 

  26. Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45(1):255–68.

    Article  PubMed  CAS  Google Scholar 

  27. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.

    Article  PubMed  CAS  Google Scholar 

  28. McBride GB. A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. In: NIWA Client Report: HAM2005-062. Hamilton: NIWA; 2005.

  29. Lötsch J, Angst MS. The mu-opioid agonist remifentanil attenuates hyperalgesia evoked by blunt and punctuated stimuli with different potency: a pharmacological evaluation of the freeze lesion in humans. Pain. 2003;102(1–2):151–61.

    Article  PubMed  Google Scholar 

  30. Segers K, Dahlback B, Nicolaes GA. Coagulation factor V and thrombophilia: background and mechanisms. Thromb Haemost. 2007;98(3):530–42.

    PubMed  CAS  Google Scholar 

  31. Dentali F, Ageno W, Bozzato S, Malato A, Gianni M, Squizzato A, et al. Role of factor V Leiden or G20210A prothrombin mutation in patients with symptomatic pulmonary embolism and deep vein thrombosis: a meta-analysis of the literature. J Thromb Haemost. 2012;10(4):732–7.

    Article  PubMed  CAS  Google Scholar 

  32. Bjorgell O, Nilsson PE, Nilsson JA, Svensson PJ. Location and extent of deep vein thrombosis in patients with and without FV:R 506Q mutation. Thromb Haemost. 2000;83(5):648–51.

    PubMed  CAS  Google Scholar 

  33. Coppola A, Tufano A, Cerbone AM, Di Minno G. Inherited thrombophilia: implications for prevention and treatment of venous thromboembolism. Semin Thromb Hemost. 2009;35(7):683–94.

    Article  PubMed  CAS  Google Scholar 

  34. Barone JE, Madlinger RV. Should an Allen test be performed before radial artery cannulation? J Trauma. 2006;61(2):468–70.

    Article  PubMed  Google Scholar 

  35. Tuncali BE, Kuvaki B, Tuncali B, Capar E. A comparison of the efficacy of heparinized and nonheparinized solutions for maintenance of perioperative radial arterial catheter patency and subsequent occlusion. Anesth Analg. 2005;100(4):1117–21.

    Article  PubMed  CAS  Google Scholar 

  36. Bedford RF, Wollman H. Complications of percutaneous radial-artery cannulation: an objective prospective study in man. Anesthesiology. 1973;38(3):228–36.

    Article  PubMed  CAS  Google Scholar 

  37. Bedford RF. Radial arterial function following percutaneous cannulation with 18- and 20-gauge catheters. Anesthesiology. 1977;47(1):37–9.

    Article  PubMed  CAS  Google Scholar 

  38. Bedford RF, Major MC. Percutaneous radial-artery cannulation: increased safety using teflon catheters. Anesthesiology. 1975;42(2):219–22.

    Article  PubMed  CAS  Google Scholar 

  39. Evans PJ, Kerr JH. Arterial occlusion after cannulation. Br Med J. 1975;3(5977):197–9.

    Article  PubMed  CAS  Google Scholar 

  40. Downs JB, Rackstein AD, Klein EF Jr, Hawkins IF Jr. Hazards of radial-artery catheterization. Anesthesiology. 1973;38(3):283–6.

    Article  PubMed  CAS  Google Scholar 

  41. Davis FM, Stewart JM. Radial artery cannulation: a prospective study in patients undergoing cardiothoracic surgery. Br J Anaesth. 1980;52(1):41–7.

    Article  PubMed  CAS  Google Scholar 

  42. Mortensen JD. Clinical sequelae from arterial needle puncture, cannulation, and incision. Circulation. 1967;35(6):1118–23.

    Article  PubMed  CAS  Google Scholar 

  43. Kim JM, Arakawa K, Bliss J. Arterial cannulation: factors in the development of occlusion. Anesth Analg. 1975;54(6):836–41.

    Article  PubMed  CAS  Google Scholar 

  44. Jones RM, Hill AB, Nahrwold ML, Bolles RE. The effect of method of radial artery cannulation on postcannulation blood flow and thrombus formation. Anesthesiology. 1981;55(1):76–8.

    Article  PubMed  CAS  Google Scholar 

  45. Mandel MA, Dauchot PJ. Radial artery cannulation in 1,000 patients: precautions and complications. J Hand Surg Am. 1977;2(6):482–5.

    Article  PubMed  CAS  Google Scholar 

  46. Cannon BW, Meshier WT. Extremity amputation following radial artery cannulation in a patient with hyperlipoproteinemia type V. Anesthesiology. 1982;56(3):222–3.

    Article  PubMed  CAS  Google Scholar 

  47. Baker RJ, Chunprapaph B, Nyhus LM. Severe ischemia of the hand following radial artery catheterization. Surgery. 1976;80(4):449–57.

    PubMed  CAS  Google Scholar 

  48. Samaan HA. The hazards of radial artery pressure monitoring. J Cardiovasc Surg (Torino). 1971;12(4):342–7.

    CAS  Google Scholar 

  49. Katz AM, Birnbaum M, Moylan J, Pellett J. Gangrene of the hand and forearm: a complication of radial artery cannulation. Crit Care Med. 1974;2(5):270–2.

    Article  PubMed  CAS  Google Scholar 

  50. Mangar D, Laborde RS, Vu DN. Delayed ischaemia of the hand necessitating amputation after radial artery cannulation. Can J Anaesth. 1993;40(3):247–50.

    Article  PubMed  CAS  Google Scholar 

  51. Tsao JW, Neymark E, Gooding GA. Radial artery mycotic pseudoaneurysm: an unusual complication of catheterization. J Clin Ultrasound. 2000;28(8):414–6.

    Article  PubMed  CAS  Google Scholar 

  52. Edwards DP, Clarke MD, Barker P. Acute presentation of bilateral radial artery pseudoaneurysms following arterial cannulation. Eur J Vasc Endovasc Surg. 1999;17(5):456–7.

    Article  PubMed  CAS  Google Scholar 

  53. Lee MK, Lee IO, Kong MH, Han SK, Lim SH. Surgical treatment of digital ischemia occurred after radial artery catheterization. J Korean Med Sci. 2001;16(3):375–7.

    PubMed  CAS  Google Scholar 

  54. Falor WH, Hansel JR, Williams GB. Gangrene of the hand: a complication of radial artery cannulation. J Trauma. 1976;16(9):713–6.

    Article  PubMed  CAS  Google Scholar 

  55. Mayer T, Matlak ME, Thompson JA. Necrosis of the forearm following radial artery catheterization in a patient with Reye’s syndrome. Pediatrics. 1980;65(1):141–3.

    PubMed  CAS  Google Scholar 

  56. Bedford RF. Long-term radial artery cannulation: effects on subsequent vessel function. Crit Care Med. 1978;6(1):64–7.

    Article  PubMed  CAS  Google Scholar 

  57. Seligsohn U, Lubetsky A. Genetic susceptibility to venous thrombosis. N Engl J Med. 2001;344(16):1222–31.

    Article  PubMed  CAS  Google Scholar 

  58. HapMap CEU population. http://hapmap.ncbi.nlm.nih.gov/. Accessed 19 Feb 2012.

  59. Open Source Code. STANPUMP. http://www.opentci.org/lib/exe/fetch.php?media=code:stanpump.zip. Accessed 23 Mar 2012.

  60. Pertseva M. The evolution of hormonal signalling systems. Comp Biochem Physiol A Comp Physiol. 1991;100(4):775–87.

    Article  PubMed  CAS  Google Scholar 

  61. Hozyasz KK, Mostowska A, Szaflarska-Poplawska A, Lianeri M, Jagodzinski PP. Polymorphic variants of genes involved in homocysteine metabolism in celiac disease. Mol Biol Rep. 2012;39(3):3123–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Dr. Robert Pfleger Foundation, Bamberg, Germany (BGO), is acknowledged for study support. The authors declare no conflicts of interest that are directly relevant to the content of this review. No sources of funding were used to assist in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Lötsch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 191 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oertel, B.G., Vermehren, J., Zimmermann, M. et al. Necessity and Risks of Arterial Blood Sampling in Healthy Volunteer Studies. Clin Pharmacokinet 51, 629–638 (2012). https://doi.org/10.1007/s40262-012-0001-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-012-0001-1

Keywords

Navigation