Skip to main content
Log in

Electronic and topological properties of interactions between imidazolium-based ionic liquids and thiophenic compounds: a theoretical investigation

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

To deepen the understanding the interactions of thiophenic compounds in ionic liquids, we have performed a systemic study on the electronic structures, and topological properties of interactions between N-ethyl-N-ethylimidazolium diethyl phosphate ([EEIM][DEP]) ionic liquid and 3-methylthiophene (3-MT), benzothiophene (BT), or dibenzothiophene (DBT) using density functional theory. From NBO atomic charges and electrostatic potential analyses, most of the positive charge is located on C2–H2 in the [EEIM] cation, and the negative charge is focused on oxygen atoms in [DEP] anion, implying oxygen atoms in [DEP] should easily attack C2–H2 in [EEIM]. The electrostatic interaction between anion and cation may be dominant for the formation of the [EEIM]–[DEP] ion pair. The large stabilizing effect is due to the strong orbital interactions between the antibonding orbital of proton donor σ*(C2–H2) in [EEIM] cation and the lone pairs of proton acceptor LP(O) in [DEP] anion. A common feature of [EEIM][DEP], [EEIM][DEP]-3-MT/BT/DBT complexes is the presence of hydrogen bonds between [EEIM] cation and [DEP] anion. This work has also given the interacting mechanism of 3-MT, BT, and DBT adsorption on [EEIM][DEP] ionic liquid. Both [EEIM] cation and [DEP] anion are shown to play important roles in interactions between 3-MT, BT, DBT and [EEIM][DEP], which has been corroborated by NBO and AIM analyses. The π···π, π···C–H and hydrogen bonding interactions occur between [EEIM][DEP] and 3-MT, BT, DBT. The strength of sulfur involved interactions between 3-MT, BT, DBT and [EEIM][DEP] follows the order of 3-MT > BT > DBT. The order of interaction energies between [EEIM][DEP] and 3-MT, BT, DBT is 3-MT < BT < DBT, in agreement with the order of extractive selectivity from fuel oils (DBT > BT > 3-MT) in terms of sulfur partition coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Stanislaus, A. Marafi, M.S. Rana, Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal. Today 153, 1–68 (2010)

    Article  CAS  Google Scholar 

  2. P.S. Kulkarni, C.A.M. Afonso, Deep desulfurization of diesel fuel using ionic liquids: current status and future challenges. Green Chem. 12, 1139–1149 (2010)

    Article  CAS  Google Scholar 

  3. A. Bosmann, L. Datsevich, A. Jess, A. Lauter, C. Schmitz, P. Wasseerscheid, Deep desulfurization of diesel fuel by extraction with ionic liquids. Chem. Commun. 2494–2495 (2001)

  4. W. Lo, H. Yang, G. Wei, One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ionic liquids. Green Chem. 5, 639–642 (2003)

    Article  CAS  Google Scholar 

  5. Y. Nie, C. Li, A. Sun, H. Meng, Z. Wang, Extractive desulfurization of gasoline using imidazolium-based phosphoric ionic liquids. Energy Fuels 20, 2083–2087 (2006)

    Article  CAS  Google Scholar 

  6. Y. Nie, C. Li, Z. Wang, Extractive desulfurization of fuel oil using alkylimidazole and its mixture with dialkylphosphate ionic liquids. Ind. Eng. Chem. Res. 46, 5108–5112 (2007)

    Article  CAS  Google Scholar 

  7. X. Jiang, Y. Nie, C. Li, Z. Wang, Imidazolium-based alkylphosphate ionic liquids—a potential solvent for extractive desulfurization of fuel. Fuel 87, 79–84 (2008)

    Article  CAS  Google Scholar 

  8. R. Anantharaj, T. Banerjee, Phase behavior of 1-ethyl-3-methylimidazolium thiocyanate ionic liquid with catalytic deactivated compounds and water at several temperatures: experiments and theoretical predictions. Int. J. Chem. Eng. 2011, 1–13 (2011)

    Article  Google Scholar 

  9. S. Potdar, R. Anantharaj, T. Banerjee, Aromatic extraction using mixed ionic liquids: experiments and COSMO-RS predictions. J. Chem. Eng. Data 57, 1026–1035 (2012)

    Article  CAS  Google Scholar 

  10. A.A.P. Kumar, T. Banerjee, Thiophene separation with ionic liquids for desulphurization: a quantum chemical approach. Fluid Phase Equilib. 278, 1–8 (2009)

    Article  CAS  Google Scholar 

  11. R. Anantharaj, T. Banerjee, Liquid–liquid equilibria for quaternary systems of imidazolium based ionic liquid + thiophene + pyridine + iso-octane at 298.15 K: experiments and quantum chemical predictions. Fluid Phase Equilib. 312, 20–30 (2011)

    Article  CAS  Google Scholar 

  12. R.S. Santiago, G.R. Santos, M. Aznar, UNIQUAC correlation of liquid–liquid equilibrium in systems involving ionic liquids: the DFT-PCM approach. Fluid Phase Equilib. 278, 54–61 (2009)

    Article  CAS  Google Scholar 

  13. C.G. Hanke, A. Johansson, J.B. Harper, R.M. Lynden-Bell, Why are aromatic compounds more soluble than aliphatic compounds in dimethylimidazolium ionic liquids? A simulation study. Chem. Phys. Lett. 374, 85–90 (2003)

    Article  CAS  Google Scholar 

  14. K. Kedra-Krolik, M. Fabrice, J. Jaubert, Extraction of thiophene or pyridine from n-heptane using ionic liquids, gasoline and diesel desulfurization. Ind. Eng. Chem. Res. 50, 2296–2306 (2011)

    Article  CAS  Google Scholar 

  15. R. Anantharaj, T. Banerjee, Quantum chemical studies on the simultaneous interaction of thiophene and pyridine with ionic liquids. AIChE J. 57, 749–764 (2011)

    Article  CAS  Google Scholar 

  16. J. Zhou, J. Mao, S. Zhang, Ab initio calculations of the interaction between thiophene and ionic liquids. Fuel Process. Technol. 89, 1456–1460 (2008)

    Article  CAS  Google Scholar 

  17. J. Martinez-Magadan, R. Oviedo-Roa, P. Garcia, R. Martinez-Palou, DFT study of the interaction between ethanethiol and Fe-containing ionic liquids for desulfurization of natural gasoline. Fuel Process. Technol. 97, 24–29 (2012)

    Article  CAS  Google Scholar 

  18. X. Liu, G. Zhou, X. Zhang, S. Zhang, Molecular dynamics simulation of desulfurization by ionic liquids. AIChE J. 56, 2983–2996 (2010)

    Article  CAS  Google Scholar 

  19. J. Gui, D. Liu, Z. Sun, D. Liu, D. Min, B. Song, X. Peng, Deep oxidative desulfurization with task-specific ionic liquids: an experimental and computational study. J. Mol. Catal. A: Chem. 331, 64–70 (2010)

    Article  CAS  Google Scholar 

  20. Y. Nie, X. Yuan, Theoretical study on interaction between ionic liquids and aromatic sulfur compounds. J. Theor. Comput. Chem. 10, 31–40 (2011)

    Article  CAS  Google Scholar 

  21. B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990)

    Article  CAS  Google Scholar 

  22. B. Delley, From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756–7764 (2000)

    Article  CAS  Google Scholar 

  23. J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992)

    Article  Google Scholar 

  24. O. Castellano, R. Gimon, H. Soscun, Theoretical study of the σ–π and π–π interactions in heteroaromatic monocyclic molecular complexes of benzene, pyridine, and thiophene dimers: implications on the resin-asphaltene stability in crude oil. Energy Fuels 25, 2526–2541 (2011)

    Article  CAS  Google Scholar 

  25. A.E. Reed, L.A. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88, 899–926 (1988)

    Article  CAS  Google Scholar 

  26. F. Biegler-König, J. Schönbohm, Update of the AIM2000 program for atoms in molecules. J. Comput. Chem. 23, 1489–1494 (2002)

    Article  Google Scholar 

  27. F. Biegler-König, J. Schönbohm, D. Bayles, AIM2000—a program to analyze and visualize atoms in molecules. J. Comput. Chem. 22, 545–559 (2001)

    Article  Google Scholar 

  28. Y. Inada, H. Orita, Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: evidence of small basis set superposition error compared to Gaussian basis sets. J. Comput. Chem. 29, 225–232 (2008)

    Article  CAS  Google Scholar 

  29. A. Bondi, Van der Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964)

    Article  CAS  Google Scholar 

  30. P.A. Hunt, B. Kirchne, T. Welton, Characterizing the electronic structure of ionic liquids: an examination of the 1-butyl-3-methylimidazolium chloride ion pair. Chem. Eur. J. 12, 6762–6775 (2006)

    Article  CAS  Google Scholar 

  31. M.O. Sinnokrot, E.F. Valeev, C.D. Sherrill, Estimates of the ab initio limit for π–π interactions: the benzene dimer. J. Am. Chem. Soc. 124, 10887–10893 (2002)

    Article  CAS  Google Scholar 

  32. C.A. Hunter, J.K.M. Sanders, The nature of π–π interactions. J. Am. Chem. Soc. 112, 5525–5534 (1990)

    Article  CAS  Google Scholar 

  33. M.J. Rashkin, M.L. Waters, Unexpected substituent effects in offset π–π stacked interactions in water. J. Am. Chem. Soc. 124, 1860–1861 (2002)

    Article  CAS  Google Scholar 

  34. R.W.F. Bader, A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893–928 (1991)

    Article  CAS  Google Scholar 

  35. U. Koch, P.L.A. Popelier, Characterization of C-H-O hydrogen bonds on the basis of the charge density. J. Phys. Chem. 99, 9747–9754 (1995)

    Article  CAS  Google Scholar 

  36. P.L.A. Popelier, Characterization of a dihydrogen bond on the basis of the electron density. J. Phys. Chem. A 102, 1873–1878 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Natural Science Foundation of China (21176259). Awarded foundation for excellent young and middle-aged scientist of Shandong Province, China (BS2010NJ024) and the Natural Science Foundation of Shandong Province (ZR2011BQ004), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renqing Lü.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lü, R., Liu, D., Lu, Y. et al. Electronic and topological properties of interactions between imidazolium-based ionic liquids and thiophenic compounds: a theoretical investigation. J IRAN CHEM SOC 10, 733–744 (2013). https://doi.org/10.1007/s13738-012-0207-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-012-0207-z

Keywords

Navigation