Skip to main content
Log in

Viability of probiotic microorganisms in cheese during production and storage: a review

  • Review Paper
  • Published:
Dairy Science & Technology

Abstract

Cheese is a dairy product which has a good potential for delivery of probiotic microorganisms into the human intestine due to its specific chemical and physical characteristics compared to fermented milks (higher pH value and lower titrable acidity, higher buffering capacity, greater fat content, higher nutrient availability, lower oxygen content, and denser matrix of the texture). In addition, a large variety of cheese types all over the world, consumption of cheese by everybody in their long-term diet, as well as the nutritional value of cheese have resulted in regular market growth for probiotic cheeses. To be considered to offer probiotic health benefits, probiotics must remain viable in food products above a threshold level (e.g., 106 cfu g−1) until the time of consumption, without adversely altering sensory attributes. Therefore, incorporation of probiotic cells into different cheese matrices and studying the influences of different compositional and process factors affecting the viability of probiotics in this product as well as its sensory properties have been the subject of numerous studies. Factor influencing the stability of probiotics in cheese can be categorized into three areas including formulation factors (strains of probiotic bacteria and microbial interactions, pH and titrable acidity, hydrogen peroxide, molecular oxygen, growth promoters and food additives, salt, microencapsulation, and ripening factors), process factors (incubation temperature, heat treatment, types of inoculation, and storage temperature), and packaging materials and systems. This article reviews the viability of probiotic organisms in cheese as well as the main factors influencing their stability during processing and storage.

摘要

与其他的发酵乳制品相比, 干酪具有其独特的物理化学特性 (高pH值、较低的滴定酸度、较高的缓冲能力、较高的脂肪含量、高营养利用率、较低的氧气浓度以及浓厚的质地), 因此干酪是一种理想的将益生微生物带进人体的载体。世界上有千余种干酪, 人类消费干酪具有悠久的历史。由于干酪的高营养价值, 使具有益生功能干酪的市场需求量逐年增加。基于益生菌对人体健康的重要性, 要求食品中益生菌的活菌数在整个货架期内必须达到一定的数值(如106 cfu.g-1), 而且产品的感官特性不能发生改变。因此, 国内外关于不同干酪底物中益生菌细胞总数对干酪营养成分以及干酪感官特性影响的报道非常多。影响干酪中益生菌稳定性的因素分概括为三个方面, 包括组成因素 (益生菌菌株和微生物之间的相互作用、pH和可滴定酸度、过氧化氢、分子态氧、生长促进剂和食品添加剂、盐、微胶囊和成熟因素) 、加工条件 (培养温度、热处理、接种形式和贮藏温度) 以及包装材料和包装方式。本文概述了干酪中益生微生物的生存能力以及在加工和贮藏期间影响益生微生物稳定性的因素。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alegro JHA, Rocha JS, Saad SMI (2002) Viabilidade de Lactobacillus acidophilus e Bifidobacterium lactis isolados e ou em co-cultura em queijo Minas frescal, 7th Semana de Ciência e Tecnologia da Faculdade de Ciências Farmacêuticas da Universidade de São Paulo. Braz J Pharm Sci 38:61–68

    Google Scholar 

  • Ariga H, Hujita H, Nakajima A, Kanbara I (1989a) Studies on soft type cheese manufactured by addition of yoghurt II. Jpn J Dairy Food Sci 38:161–166

    Google Scholar 

  • Ariga H, Takahashi S, Sakmoto A, Tsutsui S (1989b) Studies on soft type cheese manufactured by addition of yoghurt I. Jpn J Dairy Food Sci 38:A153

    Google Scholar 

  • Arroyo L, Cotton LN, Martin JH (1994) Evaluation of media for enumeration of Bifidobacterium adolescentis, B. infantis and B. longum from pure culture. Cult Dairy Prod J 29:20–24

    Google Scholar 

  • Arunachalam KD (1999) Role of bifidobacteria in nutrition, medicine and technology. Nutr Res 19:1559–1597

    CAS  Google Scholar 

  • Ballongue J (1993) Bifidobacteria and probiotic action. Marcel Dekker, New York

    Google Scholar 

  • Belviso S et al (2009) In vitro cholesterol-lowering activity of Lactobacillus plantarum and Lactobacillus paracasei strains isolated from the Italian Castelmagno PDO cheese. Dairy Sci Technol 89:169–176

    CAS  Google Scholar 

  • Beresford T, Williams A (2004) The microbiology of cheese ripening. Elsevier Academic, London

    Google Scholar 

  • Bergamini CV, Hynes ER, Quiberoni A, Suarez VB, Zalazar CA (2005) Probiotic bacteria as adjunct starters: influence of the addition methodology on their survival in a semi-hard Argentinean cheese. Food Res Int 38:597–604

    CAS  Google Scholar 

  • Bergamini CV, Hynes ER, Zalazar CA (2006) Influence of probiotic bacteria on the proteolysis profile of a semi-hard cheese. Int Dairy J 16:856–866

    CAS  Google Scholar 

  • Bergamini CV, Hynes ER, Palma SB, Sabbag NG, Zalazar CA (2009) Proteolytic activity of three probiotic strains in semi-hard cheese as single and mixed cultures: Lactobacillus acidophilus, Lactobacillus paracasei and Bifidobacterium lactis. Int Dairy J 19:467–475

    CAS  Google Scholar 

  • Blanchette L, Roy D, Gauthier SF (1995) Production of cultured cottage cheese dressing by bifidobacteria. J Dairy Sci 78:1421–1429

    CAS  Google Scholar 

  • Blanchette L, Roy D, Belanger G, Gauthier SF (1996) Production of cottage cheese using dressing fermented by bifidobacteria. J Dairy Sci 79:8–15

    CAS  Google Scholar 

  • Boylston TD, Vinderola CG, Ghoddusi HB, Reinheimer JA (2004) Incorporation of bifidobacteria into cheeses: challenges and rewards. Int Dairy J 14:375–387

    CAS  Google Scholar 

  • Brassert D, Schiffrin EJ (2000) Pre- and probiotics. Aspen, Gaithersburg

    Google Scholar 

  • Bruno FA, Lankaputhra WEV, Shah NP (2002) Growth, viability and activity of Bifidobacterium spp. in skim milk containing prebiotics. J Food Sci 67:2740–2744

    CAS  Google Scholar 

  • Buriti FCA, Rocha JS, Saad SMI (2005a) Incorporation of Lactobacillus acidophilus in Minas fresh cheese and its implications for textural and sensorial properties during storage. Int Dairy J 15:1279–1288

    CAS  Google Scholar 

  • Buriti FCA, Rocha JS, Assis EG, Saad SMI (2005b) Probiotic potential of Minas fresh cheese prepared with the addition of Lactobacillus paracasei. Lebensm Wiss Technol 38:173–180

    CAS  Google Scholar 

  • Buriti FCA, Okazaki TY, Alegro JHA, Saad SMI (2007a) Effect of a probiotic mixed culture on texture profile and sensory performance of Minas fresh-cheeses in comparison with the traditional products. Arch Latinoam Nutr 57:179–185

    Google Scholar 

  • Buriti FCA, Cardarelli HR, Filisetti TMCC, Saad SMI (2007b) Synbiotic potential of fresh cream cheese supplemented with inulin and Lactobacillus paracasei in co-culture with Streptococcus thermophilus. Food Chem 104:1605–1610

    CAS  Google Scholar 

  • Bude-Ugarte M, Guglielmotti D, Giraffa G, Reinheimer JA, Hynes E (2006) Non-starter lactobacilli from Argentinean cheeses. J Food Prot 69:2983–2991

    Google Scholar 

  • Capela P, Hay TKC, Shah NP (2006) Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yogurt and freeze-dried yogurt. Food Res Int 39:203–211

    CAS  Google Scholar 

  • Cardarelli HR, Buriti FCA, Castro IA, Saad SMI (2008) Inulin and oligofructose improve sensory quality and increase the probiotic viable count in potentially synbiotic Petit-suisse cheese. Lebensm Wiss Technol 41:1037–1046

    CAS  Google Scholar 

  • Carminati D, Perrone A, Neviani E (2001) Inhibition of Clostridium sporogenes growth in Mascarpone cheese by co-inoculation with Streptococcus thermophilus under conditions of temperature abuse. Food Microbiol 18:571–579

    CAS  Google Scholar 

  • Coeuret V, Gueguen M, Vernoux JP (2004) In vitro screening of potential probiotic activities of selected lactobacilli isolated from unpasteurized milk products for incorporation into soft cheese. J Dairy Res 71:451–460

    CAS  Google Scholar 

  • Collins EB, Hall BJ (1984) Growth of bifidobacteria in milk and preparation of Bifidobacterium infantis for a dietary adjunct. J Dairy Sci 67:1376–1380

    Google Scholar 

  • Corbo MR, Albenzio M, De Angelis M, Sevi A, Gobbetti M (2001) Microbiological and biochemical properties of Canestrato Pugliese hard cheese supplemented with bifidobacteria. J Dairy Sci 84:551–561

    CAS  Google Scholar 

  • da Cruz AG, Faria JAF, Van Dender AGF (2007) Packaging system and probiotic dairy foods. Food Res Int 40:951–956

    Google Scholar 

  • da Cruz AG, Buriti FCA, De Souza CHB, Favia JAF, Saad SMI (2009) Probiotic cheese: health benefits, technological and stability aspects. Trends Food Sci Technol 20:344–354

    Google Scholar 

  • Daigle A, Roy D, Belanger G, Vuillemard JC (1999) Production of probiotic cheese (Cheddar-like cheese) using enriched cream fermented by Bifidobacterium infantis. J Dairy Sci 82:1081–1091

    CAS  Google Scholar 

  • Dave RI, Shah NP (1997a) Effect of cysteine on the viability of yoghurt and probiotic bacteria in yoghurts made with commercial starter cultures. Int Dairy J 7:537–545

    CAS  Google Scholar 

  • Dave RI, Shah NP (1997b) Effectiveness of ascorbic acid as an oxygen scavenger in improving viability of probiotic bacteria in yoghurts made with commercial starter cultures. Int Dairy J 7:435–443

    CAS  Google Scholar 

  • Dave RI, Shah NP (1997c) Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter culture. Int Dairy J 7:31–41

    Google Scholar 

  • De Leon-Gonzalez LP, Wendorff WL, Ingham BH, Jaeggi JJ, Houck KB (2000) Influence of salting procedure on the composition of Muenster-type cheese. J Dairy Sci 83:1396–1401

    Google Scholar 

  • de Souza CHB, Buriti FCA, Behrens JH, Saad SMI (2008) Sensory evaluation of probiotic Minas fresh cheese with Lactobacillus acidophilus added solely or in co-culture with a thermophilic starter culture. Int J Food Sci Technol 43:871–877

    Google Scholar 

  • De Vries W, Stouthamer AH (1969) Factors determining the degree of anaerobiosis of Bifidobacterium strains. Arch Mikrobiol 65:275

    Google Scholar 

  • Dinakar P, Mistry VV (1994) Growth and viability of Bifidobacterium bifidum in Cheddar cheese. J Dairy Sci 77:2854–2864

    CAS  Google Scholar 

  • Doleyres Y, Lacroix C (2005) Technologies with free and immobilised cells for probiotic bifidobacteria production and protection. Int Dairy J 15:973–988

    CAS  Google Scholar 

  • El-Zayat AI, Osman MM (2001) The use of probiotics in Tallaga cheese, Egypt. J Dairy Sci 29:99–106

    Google Scholar 

  • FAO/WHO (2001) Report on joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, Cordoba, Argentina

  • Fernandez MF, Delgado T, Boris S, Rodriguez A, Barbes C (2005) A washed-curd goat's cheese as a vehicle for delivery of a potential probiotic bacterium: Lactobacillus delbrueckii subsp. lactis UO 004. J Food Prot 68:2665–2671

    Google Scholar 

  • Fooks LJ, Fuller R, Gibson GR (1999) Prebiotics, probiotics and human gut microbiology. Int Dairy J 9:53–61

    Google Scholar 

  • Fox PF, Law L, McSweeney PLH, Wallace J (1993) Biochemistry of cheese ripening. Chapman & Hall, London

    Google Scholar 

  • Gardiner G, Ross RP, Collins JK, Fitzgerald G, Stanton C (1998) Development of a probiotic Cheddar cheese containing human-derived Lactobacillus paracasei strains. Appl Environ Microbiol 64:2192–2199

    CAS  Google Scholar 

  • Gardiner G, Ross RP, Stanton C, Lynch PB, Collins JK, Fitzgerald G (1999) Evaluation of Cheddar cheese as a food carrier for delivery of a probiotic strain to the gastrointestinal tract. J Dairy Sci 82:1379–1387

    CAS  Google Scholar 

  • Gardiner GE, Bouchier P, ƠSullivan E, Kelly J, Collins JK, Fitzgerald G, Ross RP, Stanton C (2002) A spray-dried culture for probiotic cheese manufacture. Int Dairy J 12:749–756

    CAS  Google Scholar 

  • Ghoddusi HB, Robinson RK (1996) The test of time. Dairy Indust Int 61:25–28

    Google Scholar 

  • Gilliland SE (2001) Probiotics and prebiotics. Marcel Dekker, New York

    Google Scholar 

  • Gobbetti M, Corsetti A, Smacchi E, Zocchetti AMD (1997) Production of Crescenza cheese by incorporation of bifidobacteria. J Dairy Sci 81:37–47

    Google Scholar 

  • Gobbetti M, Corsetti A, Smacchi E, Zocchetti A, De Angelis M (1998) Production of Crescenza cheese by incorporation of bifidobacteria. J Dairy Sci 81:37–47

    CAS  Google Scholar 

  • Gomes AMP, Malcata FX (1998) Development of probiotic cheese manufactured from goat milk: response surface analysis via technological manipulation. J Dairy Sci 81:1492–1507

    CAS  Google Scholar 

  • Gomes AMP, Malcata FX (1999) Bifidobacterium spp. and Lactobacillus acidophilus: biological, biochemical, technological, and therapeutical properties relevant for use as probiotics. Trends Food Sci Technol 10:139–157

    CAS  Google Scholar 

  • Gomes AMP, Malcata FX, Klaver FAM, Grande HJ (1995) Incorporation of Bifidobacterium spp. strain Bo and Lactobacillus acidophilus strain Ki in a cheese product. Neth Milk Dairy J 49:71–95

    Google Scholar 

  • Gomes AMP, Vieira MM, Malcata FX (1998) Survival of probiotic microbial strains in a cheese matrix during ripening: simulation of rates of salt diffusion and microorganism survival. J Food Eng 36:281–301

    Google Scholar 

  • Grattepanche F, Miescher-Schwenninger S, Meile L, Lacroix C (2008) Recent developments in cheese cultures with protective and probiotic functionalities. Dairy Sci Technol 88:421–444

    CAS  Google Scholar 

  • Hayes M, Coakley M, O’Sullivan L, Stanton C, Hill C, Fitzgerald GF, Murphy JJ, Ross RP (2006) Cheese as a delivery vehicle for probiotics and biogenic substances. Aust J Dairy Technol 61:132–141

    CAS  Google Scholar 

  • Hoier E, Janzen T, Henriksen CM, Rattray F, Brockmann E, Johansen E (1999) The production, application and action of lactic cheese starter cultures. CRC, Boca Raton

    Google Scholar 

  • Holzapfel WH, Schillinger U (2002) Introduction to pre- and probiotics. Food Res Int 35:109–116

    Google Scholar 

  • Ibrahim F, Ruvio S, Granlund L, Salminen S, Viitanen M, Ouwehand AC (2010) Probiotics and immunosenescence: cheese as a carrier. FEMS Immunol Med Microbiol 59:53–59

    CAS  Google Scholar 

  • Ishibashi N, Shimamura S (1993) Bifidobacteria: research and development in Japan. Food Technol 47:126–136

    Google Scholar 

  • Iwana H, Masuda H, Fujisawa T, Suzuki H, Mitsuoka T (1993) Isolation and identification of Bifidobacterium spp. in commercial yoghurt sold in Europe. Bifidobact Microflora 12:39–45

    Google Scholar 

  • Jain PK, McNaught CE, Anderson AD, MacFie J, Mitchell CJ (2004) Influence of synbiotic containing Lactobacillus acidophilus La5, Bifidobacterium lactis Bb-12, Streptococcus thermophilus, Lactobacillus bulgaricus and oligofructose on gut barrier function and sepsis in critically ill patients: a randomised controlled trial. Clin Nutr 23:467–475

    Google Scholar 

  • Jankowski T, Zielinska M, Wysakowska A (1997) Encapsulation of lactic acid bacteria with alginate/starch capsules. Biotechnol Tech 11:31–34

    CAS  Google Scholar 

  • Juntunen M, Kirjavainen PV, Ouwehand AC, Salminen SJ, Isolauri E (2001) Adherence of probiotic bacteria to human intestinal mucus in healthy infants and during rotavirus infection. Clin Diagn Lab Immunol 8:293–296

    CAS  Google Scholar 

  • Kailasapathy K, Chin J (2000) Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol Cell Biol 78:80–88

    CAS  Google Scholar 

  • Kailasapathy K, Masondole L (2005) Survival of free and microencapsulated Lactobacillus acidophilus and Bifidobacterium lactis and their effect on texture of Feta cheese. Aust J Dairy Technol 60:252–258

    Google Scholar 

  • Kandler O, Weiss N (1986) Regular non-sporing Gram positive rods. William and Wilkins, Baltimore

    Google Scholar 

  • Kaplan H, Hutkins RW (2000) Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl Environ Microbiol 66:2682–2684

    CAS  Google Scholar 

  • Kasımoğlu A, Goncuoğlu M, Akgun S (2004) Probiotic white cheese with Lactobacillus acidophilus. Int Dairy J 14:1067–1073

    Google Scholar 

  • Kebary KMK, Hussein SA, Badawi RM (1998) Improving viability of bifidobacteria and their effect on frozen ice milk, Egypt. J Dairy Sci 26:319–337

    Google Scholar 

  • Kehagias C, Jao YC, Mikolajcik EM, Hansen PMT (1977) Growth response of Bifidobacterium bifidum to hydrolytic product isolated from bovine casein. J Food Sci 42:146–150

    CAS  Google Scholar 

  • Khatoon JA, Hossain MA, Joshi VK (1990) Biochemical changes during ripening of Cheddar cheese made from cow and goat milk. Milchwissenschaft 45:436–439

    Google Scholar 

  • Kiliç GB, Kuleas ANH, Eralp I, Karahan AG (2009) Manufacture of Turkish Beyaz cheese added with probiotic strains. Lebensm Wiss Technol - Food Sci Technol 42:1003–1008

    Google Scholar 

  • Klaver FAM, Kingma F, Weerkamp AH (1993) Growth and survival of bifidobacteria in milk. Neth Milk Dairy J 47:151–164

    Google Scholar 

  • Krasaekoopt W, Bhandari B, Deeth H (2003) Evaluation of encapsulation techniques of probiotics for yoghurt. Int Dairy J 13:3–13

    CAS  Google Scholar 

  • Laroia S, Martin JH (1990) Bifidobacteria as possible dietary adjuncts in cultured dairy products—a review. Cult Dairy Prod J 25:18

    Google Scholar 

  • Lourens-Hattingh A, Viljoen BC (2001) Yogurt as probiotic carrier food. Int Dairy J 11:1–17

    Google Scholar 

  • Lynch CM, Muir DD, Banks JM, McSweeney PLH, Fox PF (1999) Influence of adjunct cultures of Lactobacillus paracasei ssp. paracasei or Lactobacillus plantarum on Cheddar cheese ripening. J Dairy Sci 82:1618–1628

    CAS  Google Scholar 

  • Martín-Hernández MC, Juarez M, Ramos M (1992) Biochemical characteristics of three types of goat cheese. J Dairy Sci 75:1747–1752

    Google Scholar 

  • Masuda T, Yamanari R, Itoh T (2005) The trial for production of fresh cheese incorporated probiotic Lactobacillus acidophilus group lactic acid bacteria. Milchwissenschaft 60:167–171

    CAS  Google Scholar 

  • Mattila-Sandholm T, Myllarinen R, Crittenden R, Mogensen G, Fonden R, Saarela M (2002) Technological challenges for future probiotic foods. Int Dairy J 12:173–182

    CAS  Google Scholar 

  • Mc Brearty S, Ross RP, Fitzgerald GF, Collins JK, Wallace JM, Stanton C (2001) Influence of two commercially available bifidobacteria cultures on Cheddar cheese quality. Int Dairy J 11:599–610

    CAS  Google Scholar 

  • Menéndez S, Centeno JA, Godínez R, Rodríguez-Otero JL (2000) Effect of Lactobacillus strains on the ripening and organoleptic characteristics of Arzua-Ulloa cheese. Int J Food Microbiol 59:37–46

    Google Scholar 

  • Milesi MM, Vinderola CG, Sabbag N, Meinardi CA, Hynes E (2009) Influence on cheese proteolysis and sensory characteristics of non-starter lactobacilli strains with probiotic potential. Food Res Int 42:1186–1196

    CAS  Google Scholar 

  • Miller BCW, Nguyen MH, Rooney MKK (2003) The control of dissolved oxygen content in probiotic yoghurts by alternative packaging materials. Pack Technol Sci 16:61–67

    CAS  Google Scholar 

  • Misra AK, Kuila RK (1990) Cultural and biochemical activities of Bifidobacterium bifidum. Milchwissenschaft 45:155–158

    CAS  Google Scholar 

  • Mistry VV, Kasperson KM (1998) Influence of salt on the quality of reduced fat Cheddar cheese. J Dairy Sci 81:1214–1221

    CAS  Google Scholar 

  • Mocquot G (1979) Reviews of the progress of dairy science: Swiss-type cheese. J Dairy Res 46:133–160

    CAS  Google Scholar 

  • Modler HW (1994) Bifidogenic factors—sources, metabolism, and applications. Int Dairy J 4:383–407

    Google Scholar 

  • Modler HW, McKellar RC, Goff HD, Mackie DA (1990a) Using ice cream as a mechanism to incorporate bifidobacteria and fructo-oligosaccharides into human diet. Cult Dairy Prod J 25:4–6, 8–9

    CAS  Google Scholar 

  • Modler HW, McKeller RC, Yaguchi M (1990b) Bifidobacteria and bifidogenic factors. Can Inst Food Sci Technol J 23:29–41

    CAS  Google Scholar 

  • Moreno Y, Collado MC, Ferrús MA, Cobo JM, Hernández E, Hernández M (2006) Viability assessment of lactic acid bacteria in commercial dairy products stored at 4°C using LIVE ⁄DEAD® BacLight™ staining and conventional plate counts. Int J Food Sci Technol 41:275–280

    CAS  Google Scholar 

  • Mortazavian AM, Sohrabvandi S (2006) Probiotics and food probiotic products; based on dairy probiotic products. Eta, Tehran

    Google Scholar 

  • Mortazavian AM, Sohrabvandi S, Mousavi SM, Reinheimer JA (2006) Combined effects of temperature-related variables on the viability of probiotic micro-organisms in yogurt. Aust J Dairy Technol 61:248–252

    Google Scholar 

  • Mortazavian AM, Razavi SH, Ehsani MR, Sohrabvandi S (2007) Principles and methods of microencapsulation of probiotic microorganisms, Iran. J Biotechnol 5:1–18

    CAS  Google Scholar 

  • Mortazavian AM, Ehsani MR, Azizi A, Razavi SH, Mousavi SM, Reinheimer JA (2008a) Effect of microencapsulation of probiotic bacteria with calcium alginate on cell stability during the refrigerated storage period in the Iranian yogurt drink (Doogh). Milchwissenschaft 63:233–348

    Google Scholar 

  • Mortazavian AM, Azizi A, Ehsani MR, Razavi SH, Mousavi SM, Sohrabvandi S, Reinheimer JA (2008b) Survival of encapsulated probiotic bacteria in Iranian yogurt drink (Doogh) after the product exposure to simulated gastrointestinal conditions. Milchwissenschaft 63:427–429

    CAS  Google Scholar 

  • Murad HA, Sadek ZI, Fathy FA (1998) Production of bifidus Kariesh cheese. Dtsch Lebensm -Rundsch 94:409–412

    Google Scholar 

  • Murphy O (2001) Non-polyol low-digestible carbohydrates: food applications and functional benefits. Brit J Nutr 85:S47–S53

    CAS  Google Scholar 

  • Mutai M, Mada H, Shimada K (1980) Method for producing food and drinks containing bifidobacteria. US patent 4187321

  • Oliveira MN, Sivieri K, Alegro JHA, Saad SMI (2002) Aspectos tecnológicos de alimentos funcionais contendo probióticos. Braz J Pharm Sci 38:1–21

    Google Scholar 

  • Ong L, Henriksson A, Shah NP (2007) Chemical analysis and sensory evaluation of Cheddar cheese produced with Lactobacillus acidophilus, Lb. casei, Lb. paracasei or Bifidobacterium sp. Int Dairy J 17:937–945

    CAS  Google Scholar 

  • O'Riordan K, Fitzgerald GF (1998) Evaluation of bifidobacteria for the production of antimicrobial compounds and assessment of performance in Cottage cheese at refrigeration temperature. J Appl Microbiol 85:103–114

    Google Scholar 

  • Otani H (1992) Milk products as dietetic and prophylactic foods. Elsevier, London

    Google Scholar 

  • Özer D, Akin S, Özer B (2005) Effect of inulin and lactulose on survival of Lactobacillus acidophilus La-5 and Bifidobacterium bifidum BB-02 in acidophilus-bifidus yoghurt. Food Sci Technol Int 11:19–24

    Google Scholar 

  • Özer B, Kirmaci HA, Senel E, Atamer M, Hayaloğlu A (2008) Improving the viability of Bifidobacterium bifidum BB-12 and Lactobacillus acidophilus LA-5 in White-brined cheese by microencapsulation. Int Dairy J 19:22–29

    Google Scholar 

  • Pagano JC (1998) Nueva legislacion del Mercosur para leches fermentadas. Indust Lech 713:8–13

    Google Scholar 

  • Phillips M, Kailasapathy K, Tran L (2006) Viability of commercial probiotic cultures (L. acidophilus, Bifidobacterium sp., L. casei, L. paracasei and L. rhamnosus) in Cheddar cheese. Int J Food Microbiol 108:276–280

    CAS  Google Scholar 

  • Poch M, Bezkorovainy A (1991) Bovine milk k-casein trypsin digest is a growth-enhancer for the genus Bifidobacterium. J Agric Food Chem 39:73–77

    CAS  Google Scholar 

  • Poch M, Bezkorovainy A (1988) Growth enhancing supplements for various species of genus Bifidobacterium. J Dairy Sci 71:3214

    CAS  Google Scholar 

  • Proulx M, Gauthier SF, Roy D (1992) Utilisation d’hydrolysats enzymatiques de caséine pour la croissance des bifidobactéries. Lait 72:393–404

    CAS  Google Scholar 

  • Rao AV, Shiwnarain N, Maharaj I (1989) Survival of microencapsulated Bifidobacterium pseudolongum in simulated gastric and intestinal juices. Can Inst Food Sci Technol J 22:345–349

    Google Scholar 

  • Rašic JL, Kurmann JA (1983) Bifidobacteria and their role. Brikhauser, Basel

    Google Scholar 

  • Ravula RR, Shah NP (1999) Survival of microencapsulated L. acidophilus and Bifidobacterium spp. in fermented frozen dairy desserts. J Dairy Sci 82:4, Abstr

    Google Scholar 

  • Roberfroid MB (2005) Introducing inulin-type fructans. Brit J Nutr 93:S13–S25

    CAS  Google Scholar 

  • Robinson RK (1991) Microorganisms of fermented milks. Elsevier, London

    Google Scholar 

  • Robinson RK, Samona A (1992) Health aspects of ‘bifido’ products: a review. Int J Food Sci Nutr 43:175–180

    Google Scholar 

  • Rocha JR, Catana R, Ferreira BS, Cabral JMS, Fernandes P (2006) Design and characterisation of an enzyme system for inulin hydrolysis. Food Chem 95:77–82

    CAS  Google Scholar 

  • Rogelj I, Bogovic Matijasic B, Majhenic AC, Stojkovic S (2002) The survival and persistence of Lactobacillus acidophilus LF221 in different ecosystems. Int J Food Microbiol 76:83–91

    Google Scholar 

  • Ross RP, Fitzgerald GF, Collins JK, Stanton C (2002) Cheese delivering biocultures—probiotic cheese. Aust J Dairy Technol 57:71–78

    Google Scholar 

  • Roy D (2001) Media for the isolation and enumeration of bifidobacteria in dairy products. Int J Food Microbiol 69:167–182

    CAS  Google Scholar 

  • Roy D, Desjardins ML, Mondou F (1995) Selection of bifidobacteria for use under cheesemaking condition. Milchwissenschaft 50:139

    CAS  Google Scholar 

  • Roy D, Mainville I, Mondou F (1997) Selective enumeration and survival of bifidobacteria in fresh cheese. Int Dairy J 7:785–793

    Google Scholar 

  • Rybka S, Kailasapathy K (1995) The survival of culture bacteria in fresh and freeze-dried AB yoghurts. Aust J Dairy Technol 50:51–57

    Google Scholar 

  • Ryhanen EL, Pihlanto-Leppala A, Pahkala E (2001) A new type of ripened, low-fat cheese with bioactive properties. Int Dairy J 11:441–447

    CAS  Google Scholar 

  • Samona A, Robinson RK (1991) Enumeration of bifidobacteria in dairy products. J Soc Dairy Technol 44:64–66

    Google Scholar 

  • Samona A, Robinson RK (1994) Effect of yogurt cultures on the survival of bifidobacteria in fermented milks. J Soc Dairy Technol 47:58–60

    Google Scholar 

  • Scardovi V (1986) Genus Bifidobacterium. Williams & Wilkins, Baltimore

    Google Scholar 

  • Shah NP (1997) Isolation and enumeration of bifidobacteria in fermented milk products: a review. Milchwissenschaft 52:72–76

    CAS  Google Scholar 

  • Shah NP (2000) Probiotic bacteria: selective enumeration and survival in dairy foods. J Dairy Sci 83:894–907

    CAS  Google Scholar 

  • Shah NP, Lankaputhra WEV, Britz ML, Kyle WSA (1995) Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in commercial yoghurt during refrigerated storage. Int Dairy J 5:515–521

    Google Scholar 

  • Sharp MD, McMahon DJ, Roadbent JR (2008) Comparative evaluation of yogurt and low-fat Cheddar cheese as delivery media for probiotic Lactobacillus casei. J Food Sci 73:375–377

    Google Scholar 

  • Shimamura S, Fumiaki ABE, Ishibashi N, Miyakawa H, Yeashima T, Araya T, Tomita M (1992) Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species. J Dairy Sci 75:3296–3306

    CAS  Google Scholar 

  • Shin HS, Lee JH, Pestka JJ, Ustunol Z (2000) Growth and viability of commercial Bifidobacterium spp. in skin milk containing oligosaccharides and inulin. J Food Sci 65:884–887

    CAS  Google Scholar 

  • Songisepp E, Kullisaar T, Hutt P, Brilene T, Zilmer M, Mikelsaar M (2004) A new probiotic cheese with antioxidative and antimicrobial activity. J Dairy Sci 87:2017–2023

    CAS  Google Scholar 

  • Souza CHB, Saad SMI (2008) Viability of Lactobacillus acidophilus La-5 added solely or in co-culture with a yoghurt starter culture and implications on physico-chemical and related properties of Minas fresh cheese during storage. Food Sci Technol 42:633–640

    Google Scholar 

  • Suárez-Solís V, Cardoso F, Núñez de Villavicencio M, Fernández M, Fragoso L (2002) Probiotic fresh cheese. Alimentaria 39:83–86

    Google Scholar 

  • Takano T, Saito Y, Futami A, Hayakawa K (1988) Method for preparation of bifidobacteria-containing fermented milk. Eur. Patent Appl. No 4913913

  • Talwalkar A, Kailasapathy K (2004) Comparison of selective and differential media for the accurate enumeration of strains of Lactobacillus acidophilus, Bifidobacterium spp. and Lactobacillus casei complex from commercial yoghurts. Int Dairy J 14:142–149

    Google Scholar 

  • Tamime AY (2002) Microbiology of starter cultures. Wiley, New York

    Google Scholar 

  • Tamime AY, Robinson RK (1988) Fermented milks and their trends. II. Technological aspects. J Dairy Res 55:281–307

    CAS  Google Scholar 

  • Tamime AY, Saarela M, Sondergaard K, Mistry VV, Shah NP (2005) Production and maintenance of viability of probiotic microorganisms in dairy products. In: Tamime AY (ed) Probiotic dairy products. Blackwell, Ayr, pp 39–63

    Google Scholar 

  • Thage BV, Broe ML, Petersen MH, Petersen MA, Bennedsen M, Ardo Y (2005) Aroma development in semi-hard reduced-fat cheese inoculated with Lactobacillus paracasei strains with different aminotransferase profiles. Int Dairy J 15:795–805

    CAS  Google Scholar 

  • Tharmaraj N, Shah NP (2004) Survival of Lactobacillus acidophilus, Lactobacillus paracasei ssp. paracasei, Lactobacillus rhamnosus, Bifidobacterium animalis and Propionibacterium in cheese-based dips and the suitability of dips as effective carriers of probiotic bacteria. Int Dairy J 14:1055–1066

    Google Scholar 

  • Thomas TD, Crow VL (1983) Mechanism of D(-)-lactic acid formation in Cheddar cheese. N Z J Dairy Sci Technol 18:131–141

    CAS  Google Scholar 

  • Van den Tempel T, Gundersen JK, Nielsen MS (2002) The microdistribution of oxygen in Danablu cheese measured by a microsensor during ripening. Int J Food Microbiol 75:157–161

    Google Scholar 

  • Vinderola CG, Prosello W, Ghiberto D, Reinheimer JA (2000) Viability of probiotic (Bifidobacterium, Lactobacillus acidophilus and Lactobacillus casei) and nonprobiotic microflora in Argentinian Fresco cheese. J Dairy Sci 83:1905–1911

    CAS  Google Scholar 

  • Vinderola CG, Costa GA, Regenhardt S, Reinheimer JA (2002a) Influence of compounds associated with fermented dairy products on the growth of lactic acid starter and probiotic bacteria. Int Dairy J 12:579–589

    CAS  Google Scholar 

  • Vinderola CG, Mocchiutti P, Reinheimer JA (2002b) Interactions among lactic acid starter and probiotic bacteria used for fermented dairy products. J Dairy Sci 85:721–729

    CAS  Google Scholar 

  • Walstra P, Geurts TJ, Noomen A, Jellema A, van Boekel MSAJ (1999) Milk components. Marcel Dekker, New York

    Google Scholar 

  • Wang KY, Li SN, Liu CS, Perng DS, Su YC, Wu DC, Jan CM, Lai CH, Wang TN, Wang WM (2004) Effects of ingesting Lactobacillus- and Bifidobacterium-containing yogurt in subjects with colonized Helicobacter pylori. Am J Clin Nutr 80:737–741

    CAS  Google Scholar 

  • Zbikowski Z, Ziajka S (1986) Hydrolyzed casein as a source of bifidus factor. Nahrung 30:415–416

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Mohammad Mortazavian.

About this article

Cite this article

Karimi, R., Mortazavian, A.M. & Da Cruz, A.G. Viability of probiotic microorganisms in cheese during production and storage: a review. Dairy Science & Technol. 91, 283–308 (2011). https://doi.org/10.1007/s13594-011-0005-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13594-011-0005-x

Keywords

关键词

Navigation