Skip to main content

Advertisement

Log in

Sensing crop nitrogen status with fluorescence indicators. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

The optimization of nitrogen (N) fertilization is the object of intense research efforts around the world. Overfertilization is commonly used as a form of insurance against uncertain soil fertility level. However, this practice results in lower nitrogen use efficiency, high levels of residual N after harvest, and losses in the environment. Determining an N recommendation that would preserve actual crop requirements, profitability of the farm, and quality of the environment has been subjected to a number of research initiatives with a variable degree of success. On one hand, soil tests are capable of estimating the intensity of N release at any point in time, but rarely the capacity factor over a longer period. On the other hand, in the context of in-season N applications, crops are often considered good integrators of factors such as the presence of mineral N, climatic conditions, soil properties, and crop management. Strategies have been proposed with plant sensor-based diagnostic information for N recommendations, but the sensitivity of reflectance-based parameters alone do not provide complete satisfaction (delayed sensitivity, need of specific chlorophyll, biomass or cover fraction ranges, lack of specificity to the N stress). Fluorescence sensing methods have been used to monitor crop physiology for years, and they may offer solutions for N status diagnosis over reflectance-based methods. In this paper, we review three plant fluorescence components related to four sensing approaches—variable chlorophyll fluorescence, leaf chlorophyll content-related fluorescence emission ratio, blue-green fluorescence, and epidermal screening of chlorophyll fluorescence by phenolic compounds—from the perspective of their relevance to N fertilization management of agricultural crops. We examine the existence of N-induced changes in each case, together with applications and limitations of the approach. Among these approaches, the fluorescence emission ratio method is the most important and the most widely used to date. However, blue-green fluorescence and epidermal screening of chlorophyll fluorescence by phenolic compounds has also received a great deal of attention particularly with the recent commercial release of instruments which can measure in real time and in vivo both the leaf chlorophyll content and several phenolic compounds (anthocyanins, flavonoïds, hydroxycinnamic acids). Overall, our conclusion is that fluorescence-based technologies allow for highly sensitive plant N status information, independently from soil interference, leaf area, or biomass status. They also allow for probing not only the chlorophyll status but also other physiological parameters known to react to N fertility conditions. These new parameters have the potential to provide new N status indicators that can be assessed remotely in a precision agriculture context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams WW III, Demmig-Adams B, Logan BA, Barker DH, Osmond CB (1999) Rapid changes in xanthophyll cycle-dependent energy dissipation and photosystem II efficiency in two vines, Stephania japonica and Smilax australis, growing in the under-storey of an open eucalyptus forest. Plant Cell Environ 22:125–136. doi:10.1046/j.1365-3040.1999.00369.x

    CAS  Google Scholar 

  • Agati G (1998) Response of the in vivo chlorophyll fluorescence spectrum to environmental factors and laser excitation wavelength. Pure Appl Opt Opt 7(4):797–807. doi:10.1088/0963-9659/7/4/016

    CAS  Google Scholar 

  • Agati G, Meyer S, Matteini P, Zoran G (2007) Cerovic. Assessment of anthocyanins in grape (Vitis vinifera L.) berries using a noninvasive chlorophyll fluorescence method. J Agric Food Chem 55(4):1053–1061. doi:10.1021/jf062956k

    PubMed  CAS  Google Scholar 

  • Andersen RA, Kasperbauer MJ (1971) Effects of near-ultraviolet radiation and temperature on soluble phenols in Nicotiana tabacum. Phytochemistry 10:1229–1232. doi:10.1016/S0031-9422(00)84322-8

    CAS  Google Scholar 

  • Anderson DM, Fredrickson EL, Nachman P, Estall RE, Havstad KM, Murray LW (1998) Laser-induced fluorescence (LIF) spectra of herbaceous and woody pre- and post-digested plant material. Anim Feed Sci Technol 70:315–337. doi:10.1016/S0377-8401(97)00088-6

    Google Scholar 

  • Apostol S, Viau AA, Tremblay N, Briantais JM, Prasher S, Parent LE, Moya I (2003) Laser-induced fluorescence signatures as a tool for remote monitoring of water and nitrogen stresses in plants. Can J Remote Sens 29(1):57–65

    Google Scholar 

  • Apostol S, Viau AA, Tremblay N (2007) A comparison of multiwavelength laser-induced fluorescence parameters for the remote sensing of nitrogen stress in field cultivated corn. Can J Remote Sens 33(3):150–161

    Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55(403):1607–1621. doi:10.1093/jxb/erh196

    PubMed  CAS  Google Scholar 

  • Barnes PW, Searles PS, Ballaré CL, Ryel RJ, Caldwell MM (2000) Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies. Physiol Plant 109:274–283. doi:10.1034/j.1399-3054.2000.100308.x

    CAS  Google Scholar 

  • Bélanger MC, Viau AA, Samson G, Chamberland M (2005) Determination of a multivariate indicator of nitrogen imbalance (MINI) in potato using reflectance and fluorescence spectroscopy. Agron J 97:1515–1523. doi:10.2134/agronj2005.0040

    Google Scholar 

  • Ben Ghozlen N, Cerovic ZG, Germain C, Toutain S, Latouche G (2010) Non-destructive optical monitoring of grape maturation by proximal sensing. Sensors 10(11):10040–10068. doi:10.3390/s101110040

    PubMed  Google Scholar 

  • Bengtsson GB, Schöner R, Lombardo E, Schöner J, Borge GIA, Bilger W (2006) Chlorophyll fluorescence for non-destructive measurement of flavonoids in broccoli. Postharvest Biol Technol 39:291–298. doi:10.1016/j.postharvbio.2005.11.003

    CAS  Google Scholar 

  • Bidel LPR, Meyer S, Goulas Y, Cadot Y, Cerovic ZG (2007) Responses of epidermal phenolic compounds to light acclimation: in vivo qualitative and quantitative assessment using chlorophyll fluorescence excitation spectra in leaves of three ligneous species. J Photochem Photobiol B 88:163–179. doi:10.1016/j.jphotobiol.2007.06.002

    PubMed  CAS  Google Scholar 

  • Bilger W, Veit M, Schreiber L, Schreiber U (1997) Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence. Physiol Plant 101:754–763. doi:10.1111/j.1399-3054.1997.tb01060.x

    CAS  Google Scholar 

  • Blaikie SJ, Chacko EK (1998) Sap flow, leaf gas exchange and chlorophyll fluorescence of container-grown cashew (Anacardium occidentale L.) trees subjected to repeated cycles of soil drying. Aust J Exp Agric 38:305–311. doi:10.1071/EA97124

    Google Scholar 

  • Bolhar-Nordenkampf HR, Long SP, Baker NR, Öquist G, Schreiber U, Lechner EG (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Funct Ecol 3:497–514

    Google Scholar 

  • Bongi G, Palliotti A, Rocchi P, Moya I, Goulas Y (1994) Spectral characteristics and a possible topological assignment of blue green fluorescence excited by UV laser on leaves of unrelated species. Remote Sens Environ 47:55–64. doi:10.1016/0034-4257(94)90128-7

    Google Scholar 

  • Bredemeier C, Schmidhalter U (2003) Non-contacting chlorophyll fluorescence sensing for site-specific nitrogen fertilization in wheat and maize. In: Stafford J, Werner A (eds) Precision agriculture: Papers from the 4th European Conference on Precision Agriculture, Berlin, Germany, pp 103–108

  • Bryant JP, Chapin FS, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368. doi:10.2307/3544308

    CAS  Google Scholar 

  • Buschmann C (2007) Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynth Res 92:261–271. doi:10.1007/s11120-007-9187-8

    PubMed  CAS  Google Scholar 

  • Buschmann C, Langsdorf G, Lichtenthaler HK (2000) Imaging of the blue, green, and red fluorescence emission of plants: an overview. Photosynthetica 38(4):483–491

    CAS  Google Scholar 

  • Butler WL (1978) Energy distribution in the photochemical apparatus of photosynthesis. Annu Rev Plant Physiol 29:345–378

    CAS  Google Scholar 

  • Campbell PKE, Middleton EM, McMurtrey JE, Corp LA, Chappelle EW (2007) Assessment of vegetation stress using reflectance or fluorescence measurements. J Environ Qual 36:832–845. doi:10.2134/jeq2005.0396

    PubMed  CAS  Google Scholar 

  • Campbell EPK, Middleton EM, Corp LA, Kim MS (2008) Contribution of chlorophyll fluorescence to the apparent vegetation reflectance. Sci Total Environ 404:433–439. doi:10.1016/j.scitotenv.2007.11.004

    PubMed  CAS  Google Scholar 

  • Cartelat A, Cerovic ZG, Goulas Y, Meyer S, Lelarge C, Prioul JL, Barbottin A, Jeuffroy MH, Gate P, Agati G, Moya I (2005) Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crops Res 91:35–49. doi:10.1016/j.fcr.2004.05.002

    Google Scholar 

  • Cerovic ZG, Bergher M, Goulas Y, Tosti S, Moya I (1993) Simultaneous measurement of changes in red and blue fluorescence in illuminated isolated chloroplasts and leaf pieces: the contribution of NADPH to the blue fluorescence signal. Photosynth Res 36:193–204

    CAS  Google Scholar 

  • Cerovic ZG, Morales F, Moya I (1994) Time-resolved spectral studies of blue-green fluorescence of leaves, mesophyll and chloroplasts of sugar beet (Beta vulgaris L.). Biochim Biophys Acta 1188:58–68. doi:10.1016/0005-2728(94)90022-1

    CAS  Google Scholar 

  • Cerovic ZG, Goulas Y, Camenen L, Guyot G, Briantais JM, Morales F, Moya I (1995) Scaling fluorescence signals from the chloroplast to the canopy level. In: Guyot G (ed) Photosynthesis and remote sensing, Montpellier, France EARSel, Paris-Sud, Orsay, 220, pp 21–27

  • Cerovic ZG, Langrand E, Latouche G, Morales F, Moya I (1998) Spectral characterization of NAD(P)H fluorescence in intact isolated chloroplasts and leaves: effect of chlorophyll concentration on reabsorption of blue-green fluorescence. Photosynth Res 56:291–301

    CAS  Google Scholar 

  • Cerovic ZG, Samson G, Morales F, Tremblay N, Moya I (1999) Ultraviolet-induced fluorescence for plant monitoring: present state and prospects. Agronomie 19:543–578. doi:10.1051/agro:19990701

    Google Scholar 

  • Cerovic ZG, Ounis A, Cartelat A, Latouche G, Goulas Y, Meyer S, Moya I (2002) The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environ 25:1663–1676. doi:10.1046/j.1365-3040.2002.00942.x

    CAS  Google Scholar 

  • Cerovic ZG, Cartelat A, Goulas Y, Meyer S (2005) In-the-field assessment of wheat-leaf polyphenolics using the new optical leaf-clip Dualex. In: Stafford JV (ed) Precision agriculture, 05. Wageningen Academic Publishers, Wageningen, pp 243–250

    Google Scholar 

  • Cerovic ZG, Goutouly JP, Hilbert G, Destrac-Irvine A, Martinon V, Moise N (2009) Mapping winegrape quality attributes using portable fluorescence-based sensors. In: Best S (ed) Progap INIA, FRUTIC 09, Conception, Chile, pp 301–310

  • Chaerle L, Leinonen I, Jones HG, van der Straeten D (2007) Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. J Exp Bot 58:773–784. doi:10.1093/jxb/erl257

    PubMed  CAS  Google Scholar 

  • Chappelle EW, Williams DL (1987) Laser-induced fluorescence (LIF) from plant foliage. IEEE Trans Geosci Remote Sens 25(6):726–736. doi:10.1109/TGRS.1987.289742

    Google Scholar 

  • Chappelle EW, Wood FM Jr, McMurtrey JE III, Newcomb WW (1984) Laser-induced fluorescence of green plants. 1: A technique for the remote detection of plant stress and species differentiation. Appl Opt 23:134–138. doi:10.1364/AO.23.000134

    PubMed  CAS  Google Scholar 

  • Chappelle EW, McMurtrey JE III, Kim MS (1991) Identification of the pigment responsible for the blue fluorescence band in the laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis. Remote Sens Environ 36:213–218. doi:10.1016/0034-4257(91)90058-E

    Google Scholar 

  • Close DC, McArthur C, Hagerman AE, Davies NW, Beadle CL (2007) Phenolic acclimation to ultraviolet-A irradiation in Eucalyptus nitens seedlings raised across a nutrient environment gradient. Photosynthetica 45(1):36–42. doi:10.1007/s11099-007-0006-4

    CAS  Google Scholar 

  • Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev Camb Philos 74:311–345. doi:10.1111/j.1469-185X.1999.tb00189.x

    CAS  Google Scholar 

  • Colls JJ, Hall DP (2004) Application of a chlorophyll fluorescence sensor to detect chelate-induced metal stress in Zea mays. Photosynthetica 42(1):139–145

    CAS  Google Scholar 

  • Corp LA, McMurtrey JE III, Chappelle EW, Daughtry CST, Kim MS, Mulchi CL (1998) Applications of fluorescence sensing systems to the remote assessment of nitrogen supply in field corn (Zea mays L.). Adv Laser Remote Sens Terrestrial Hydrogr Appl SPIE 3382:80–90. doi:10.1117/12.312631

    CAS  Google Scholar 

  • Corp LA, Chappelle EW, McMurtrey III JE, Mulchi CL, Daughtry CST, Kim MS (2000) Advances in fluorescence sensing systems for the remote assessment of nitrogen supply in field corn. Geoscience and Remote Sensing Symposium, Proceedings. IGARSS 2000, IEEE

  • Corp LA, McMurtrey JE III, Middleton EM, Mulchi CL, Chappelle EW, Daughtry CST (2003) Fluorescence sensing systems: in vivo detection of biophysical variations in field corn due to nitrogen supply. Remote Sens Environ 86(4):470–479. doi:10.1016/S0034-4257(03)00125-1

    Google Scholar 

  • Cregg BM, Duck MW, Rios CM, Rowe DB, Koelling MR (2004) Chlorophyll fluorescence and needle chlorophyll concentration of Fir (Abies sp.) seedlings in response to pH. Hortscience 39(5):1121–1125

    Google Scholar 

  • DaMatta FM, Loos RA, Silva EA, Loureiro ME (2002) Limitations to photosynthesis in Coffea canephora as a result of nitrogen and water availability. J Plant Physiol 159:975–981. doi:10.1078/0176-1617-00807

    CAS  Google Scholar 

  • Debuisson S, Germain C, Garcia O, Panigai L, Moncomble D, Le Moigne M, Fadaili EM, Evain S, Cerovic ZG (2010) Using Multiplex® and Greenseeker™ to manage spatial variation of vine vigor in Champagne. 10th International Conference on Precision Agriculture. Denver, Colorado, July 18–21, 2010, CD-ROM, p 15

  • Demmig-Adams B, Björkman O (1987) Comparison of the effect of excessive light on chlorophyll fluorescence (77 K) and photon yield of O2 evolution in leaves of higher plants. Planta 171:171–184

    Google Scholar 

  • Demmig-Adams B, Adams WW III, Winter K, Meyer A, Schreiber U, Pereira JS, Krüger A, Czygan FC, Lange OL (1989) Photo-chemical efficiency of photosystem II, photon yield of O2 evolution, photosynthetic capacity, and carotenoid composition during the “midday depression” of net CO2 uptake in Arbutus unedo growing in Portugal. Planta 177:377–387

    CAS  Google Scholar 

  • Dudelzak A, Babichenko SM, Poryvkina LV, Lapimaa J (1991) Laser-induced spectral signatures in investigations of sea upper layer. 5th International Colloquium—Physical Measurements and Signatures in Remote Sensing, Vol. ESA SP-319, Paris, Courchevel, France, pp 711–714

  • Esteban R, Olascoaga B, Becerril JM, García-Plazaola JI (2010) Insights into carotenoid dynamics in non-foliar photosynthetic tissues of avocado. Physiol Plantarum 140:69–78. doi:10.1111/j.1399-3054.2010.01385.x

    CAS  Google Scholar 

  • Ferguson RB, Hergert GW, Schepers JS, Gotway CA, Cahoon JE, Peterson TA (2002) Site-specific nitrogen management of irrigated maize: yield and soil residual nitrate effects. Soil Sci Soc Am J 66:544–553

    CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. doi:10.1016/S0304-4165(89)80016-9

    CAS  Google Scholar 

  • Georgieva K, Szigeti Z, Sarvari E, Gaspar L, Maslenkova L, Peeva V, Peli E, Tuba Z (2007) Photosynthetic activity of homoiochlorophyllous desiccation tolerant plant Haberlea rhodopensis during dehydration and rehydration. Planta 225:955–964. doi:10.1007/s00425-006-0396-8

    PubMed  CAS  Google Scholar 

  • Gitelson AA, Buschmann C, Lichtenthaler HK (1998) Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements. J Plant Physiol 152:283–296

    CAS  Google Scholar 

  • Gitelson AA, Buschmann C, Lichtenthaler HK (1999) The chlorophyll fluorescence ratio F735/F700 as an accurate measurement of the chlorophyll content in plants. Remote Sens Environ 69(3):296–302. doi:10.1016/S0034-4257(99)00023-1

    Google Scholar 

  • Guidi L, Di Cagno R, Soldatini GF (2000) Screening of bean cultivars for their response to ozone as evaluated by visible symptoms and leaf chlorophyll fluorescence. Environ Pollut 107:349–355. doi:10.1016/S0269-7491(99)00170-0

    PubMed  CAS  Google Scholar 

  • Günther KP, Dahn HG, Lüdeker W (1994) Remote sensing vegetation status by laser-induced fluorescence. Remote Sens Environ 47:10–17. doi:10.1016/0034-4257(94)90122-8

    Google Scholar 

  • Häder DP, Herrmann H, Schäfer J, Santas R (1997) Photosynthetic fluorescence induction and oxygen production in two Mediterranean Cladophora species measured on site. Aquat Bot 56:253–264. doi:10.1016/S0304-3770(96)01107-2

    Google Scholar 

  • Hamilton J, Zangerl A, DeLucia E, Berenbaum M (2001) The carbon–nutrient balance hypothesis: its rise and fall. Ecol Lett 4:86–95. doi:10.1046/j.1461-0248.2001.00192.x

    Google Scholar 

  • Hashimoto M, Herai Y, Nagaoka T, Kouno K (2007) Nitrate leaching in granitic regosol as affected by N uptake and transpiration by corn. Soil Sci Plant Nutr 53(3):300–309. doi:10.1111/j.1747-0765.2007.00134.x

    CAS  Google Scholar 

  • Hassan IA (2006) Effects of water stress and high temperature on gas exchange and chlorophyll fluorescence in Triticum aestivum L. Photosynthetica 44(2):312–315. doi:10.1007/s11099- 006-0024-7

    CAS  Google Scholar 

  • Heege HJ, Reusch S, Thiessen E (2008) Prospects and results for optical systems for site-specific on-the-go control of nitrogen-top-dressing in Germany. Precis Agric 9:115–131. doi:10.1007/s11119-008-9055-3

    Google Scholar 

  • Heisel F, Sowinska M, MiehéJ A, Lang M, Lichtenthaler HK (1996) Detection of nutrient deficiencies of maize by laser induced fluorescence imaging. J Plant Physiol 148:622–631

    CAS  Google Scholar 

  • Heisel F, Sowinska M, Khalili E, Eckert C, Miehé J, Lichtenthaler HK (1997) Laser-induced fluorescence imaging for monitoring nitrogen fertilizing treatments of wheat. SPIE 3059:10–21. doi:10.1117/12.277607

    Google Scholar 

  • Huang ZA, Jiang DA, Yang Y, Sun JW, Jin SH (2004) Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants. Photosynthetica 42(3):357–364. doi:10.1023/B:PHOT.0000046153.08935.4c

    CAS  Google Scholar 

  • Hura T, Grzesiak S, Hura K, Grzesiak M, Rzepka A (2006) Differences in the physiological state between triticale and maize plants during drought stress and followed rehydration expressed by the leaf gas exchange and spectrofluorimetric methods. Acta Physiol Plant 28:433–443

    CAS  Google Scholar 

  • Hura T, Grzesiak S, Hura K, Thiemt E, Tokarz K, Wedzony M (2007) Physiological and biochemical tools useful in drought–tolerance detection in genotypes of winter triticale: accumulation of ferulic acid correlates with drought tolerance. Ann Bot 100:767–775. doi:10.1093/aob/mcm162

    PubMed  CAS  Google Scholar 

  • Khamis S, Lamaze T, Lemoine Y, Foyer C (1990) Adaptation of the photosynthetic apparatus in maize leaves as a result of N limitation. Plant Physiol 94:1436–1443. doi:10.1093/aob/mci244

    PubMed  CAS  Google Scholar 

  • Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta 376(1):105–115. doi:10.1016/0005-2728(75)90209-1

    PubMed  CAS  Google Scholar 

  • Krause GH, Gallé A, Gademann R, Winter K (2003) Capacity of protection against ultraviolet radiation in sun and shade leaves of tropical forest plants. Funct Plant Biol 30:533–542. doi:10.1071/FP03047

    CAS  Google Scholar 

  • Kruskopf M, Flynn KJ (2006) Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytol 169:525–536. doi:10.1111/j.1469-8137.2005.01601.x

    PubMed  CAS  Google Scholar 

  • Lang M, Siffel P, Braunova Z, Lichtenthaler HK (1992) Investigations of the blue-green fluorescence emission of plant leaves. Bot Acta 105:435–440

    Google Scholar 

  • Langsdorf G, Buschmann C, Sowinska M, Babani F, Mokry M, Timmermann F, Lichtenthaler HK (2000) Multicolour fluorescence imaging of sugar beet leaves with different nitrogen status by flash lamp UV-excitation. Photosynthetica 38(4):539–551

    CAS  Google Scholar 

  • Lea US, Slimestad R, Smedvig P, Lillo C (2007) Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta 225:1245–1253. doi:10.1007/s00425-006-0414-x

    PubMed  CAS  Google Scholar 

  • Lejealle S, Evain S, Cerovic ZG (2010) Multiplex: a new diagnostic tool for management of nitrogen fertilization of turfgrass. 10th International Conference on Precision Agriculture, Denver, Colorado, July 18–21, 2010, CD-ROM, p 15

  • Lenk S, Chaerle L, Pfündel EE, Langsdorf G, Hagenbeek D, Lichtenthaler HK, van der Straeten D, Buschmann C (2007) Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications. J Exp Bot 58:807–814. doi:10.1093/jxb/erl207

    PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148:4–14

    CAS  Google Scholar 

  • Lichtenthaler HK, Miehé JA (1997) Fluorescence imaging as a diagnostic tool for plant stress. Trends Plant Sci 2(8):316–320. doi:10.1016/S1360-1385(97)89954-2

    Google Scholar 

  • Lichtenthaler HK, Schweiger J (1998) Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants. J Plant Physiol 152:272–282

    CAS  Google Scholar 

  • Lichtenthaler HK, Langdorf G, Lenk S, Buschmann C (2005) Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system. Photosynthetica 43(3):355–369. doi:10.1007/s11099-005-0060-8

    CAS  Google Scholar 

  • Lima JD, Mosquim PR, Da Matta FM (1999) Leaf gas exchange and chlorophyll fluorescence parameters in Phaseolus vulgaris as affected by nitrogen and phosphorus deficiency. Photosynthetica 37(1):113–121

    Google Scholar 

  • Lu C, Zhang J (2000) Photosynthetic CO2 assimilation, chlorophyll fluorescence and photoinhibition as affected by nitrogen deficiency in maize plants. Plant Sci 151:135–143. doi:10.1016/S0168-9452(99)00207-1

    PubMed  CAS  Google Scholar 

  • Maier SW, Günther KP (2001) Sun-induced fluorescence—a new tool for precision farming. Proceedings of the International Workshop on Spectroscopy Application in Precision Farming, Freising-Weihenstephan, Germany, January, 16th–18th, pp 90–93

  • Mauromicale G, Ierna A, Marchese M (2006) Chlorophyll fluorescence and chlorophyll content in field-grown potato as affected by nitrogen supply, genotype, and plant age. Photosynthetica 44(1):76–82. doi:10.1007/s11099-005-0161-4

    CAS  Google Scholar 

  • McMurtrey JE, Middleton EM, Corp LA, Campbell PKE, Butcher LM, Daughtry CST (2003) Optical reflectance and fluorescence for detecting nitrogen needs in Zea mays L. Geoscience and Remote Sensing Symposium, IGARSS’03. Proceedings, 2003 IEEE International, Volume 7, 21–25 July 2003, pp 4602–4604

  • Mercure SA, Daoust B, Samson G (2004) Causal relationship between growth inhibition, accumulation of phenolic metabolites, and changes of UV-induced fluorescences in nitrogen-deficient barley plants. Can J Bot 6:815–821. doi:10.1139/B04-062

    Google Scholar 

  • Meroni M, Busetto L, Colombo R, Guanter L, Moreno J, Verhoef W (2010) Performance of spectral fitting methods for vegetation fluorescence quantification. Remote Sens Environ 114:363–374. doi:10.1016/j.rse.2009.09.010

    Google Scholar 

  • Méthy M, Lacaze B, Olioso A (1991) Perspectives et limites de la fluorescence pour la télédétection de l’état hydrique d’un couvert végétal: cas d’une culture de soja. Int J Remote Sens 12(1):223–230. doi:10.1080/01431169108929648

    Google Scholar 

  • Méthy M, Olioso A, Trabaud L (1994) Chlorophyll fluorescence as a tool for management of plant resources. Remote Sens Environ 47:2–9. doi:10.1016/0034-4257(94)90121-X

    Google Scholar 

  • Meyer S, Cartelat A, Moya I, Cerovic ZG (2003) UV-induced blue-green and far-red fluorescence along wheat leaves: a potential signature of leaf ageing. J Exp Bot 54(383):757–769. doi:10.1093/jxb/erg063

    PubMed  CAS  Google Scholar 

  • Morales F, Cerovic ZG, Moya I (1994) Characterization of blue-green fluorescence in the mesophyll of sugar beet (Beta vulgaris L.) leaves affected by iron deficiency. Plant Physiol 106:127–133

    PubMed  CAS  Google Scholar 

  • Morales F, Cerovic ZG, Moya I (1998) Time-resolved blue-green fluorescence of sugar beet leaves. Temperature-induced changes and consequences for the potential use of blue-green fluorescence as a signature for remote sensing of plants. Aust J Plant Physiol 25:325–334. doi:10.1071/PP97085

    Google Scholar 

  • Moshou D, Bravo C, Wahlen S, West J, McCartney A, De Baerdemaeker J, Ramon H (2006) Simultaneous identification of plant stresses and diseases in arable crops using proximal optical sensing and self-organising maps. Precis Agric 7:149–164. doi:10.1007/s11119-006-9002-0

    Google Scholar 

  • Moya I, Guyot G, Goulas Y (1992) Remotely sensed blue and red fluorescence emission for monitoring vegetation. ISPRS J Photogramm 47:205–231. doi:10.1016/0924-2716(92)90033-6

    Google Scholar 

  • Norikane JH, Kurata K (2001) Water stress detection by monitoring fluorescence of plants under ambient light. T ASAE 44(6):1915–1922

    Google Scholar 

  • Norikane J, Goto E, Kurata K, Takakura T (2003) A new relative referencing method for crop monitoring using chlorophyll fluorescence. Adv Space Res 31:245–248. doi:10.1016/S0273-1177(02)00746-9

    PubMed  CAS  Google Scholar 

  • Nybakken L, Bilger W, Johanson U, Björn LO, Zielke M, Solheim B (2004) Epidermal UV-screening in vascular plants from Svalbard (Norwegian Arctic). Polar Biol 27:383–390. doi:10.1007/s00300-004-0602-8

    Google Scholar 

  • Ounis A, Cerovic ZG, Briantais JM, Moya I (2001) Dual-excitation FLIDAR for the estimation of epidermal UV absorption in leaves and canopies. Remote Sens Environ 76:33–48. doi:10.1016/S0034-4257(00)00190-5

    Google Scholar 

  • Pfündel EE, Ben Ghozlen N, Meyer S, Cerovic ZG (2007) Investigating UV screening in leaves by two different types of portable UV fluorimeters reveals in vivo screening by anthocyanins and carotenoids. Photosynth Res 93:205–221. doi:10.1007/s11120-007-9135-7

    PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kreidemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394. doi:10.1016/S0005-2728(89)80347-0

    CAS  Google Scholar 

  • Poryvkina L, Babichenko S, Leeben A (1997) Spectral fluorescent signatures (SFS) in characterisation of water environment. In: Babichenko S, Reuter R (eds) 3rd EARSeL Workshop on Lidar Remote Sensing of Land and Sea, Tallinn, Estonia, pp 140–144

  • Richards JT, Schuerger AC, Capelle G, Guikema JA (2003) Laser-induced fluorescence spectroscopy of dark- and light-adapted bean (Phaseolus vulgaris L.) and wheat (Triticum aestivum L.) plants grown under three irradiance levels and subjected to fluctuating lighting conditions. Remote Sens Environ 84:323–341. doi:10.1016/S0034-4257(02)00115-3

    Google Scholar 

  • Robberecht R, Caldwell MM (1978) Leaf epidermal transmittance of ultraviolet radiation and its implications for plant sensitivity to ulraviolet-radiation induced injury. Oecologia 32(3):277–287

    Google Scholar 

  • Rodríguez-Román A, Iglesias-Prieto R (2005) Regulation of photochemical activity in cultured symbiotic dinoflagellates under nitrate limitation and deprivation. Mar Biol 46:1063–1073. doi:10.1007/s00227-004-1529-x

    Google Scholar 

  • Rouse JW Jr, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS. Third ERTS Symposium, Vol. 1. Washington, DC, NASA SP-351, pp 309–317

  • Samborski SM, Tremblay N, Fallon E (2009) Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agron J 101:800–816. doi:10.2134/agronj2008.0162Rx

    CAS  Google Scholar 

  • Samson G, Tremblay N, Dudelzak AE, Babichenko SM, Dextraze L, Wollring J (2000) Nutrient stress of corn plants: early detection and discrimination using a compact multiwavelength fluorescent lidar. 4th EARSeL Workshop Lidar Remote Sensing of Land and Sea held during the 20th EARSeL Symposium, Dresden, 14–16 June 2000. http://las.physik.uni–oldenburg.de/projekte/earsel/4th_workshop.html

  • Schächtl J, Huber G, Maidl FX, Sticksel E, Schulz J, Haschberger P (2005) Laser-induced chlorophyll fluorescence measurements for detecting the nitrogen status of wheat (Triticum aestivum L.) canopies. Precis Agric 6:143–156. doi:10.1007/s11119-004-1031-y

    Google Scholar 

  • Schreiber U, Bilger W (1993) Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. In: Liittge U, Ziegler H (eds) Progress in botany, vol 54. Springer, Berlin, pp 151–153

    Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Ecological studies, vol 100. Springer, Berlin, pp 49–70

    Google Scholar 

  • Schweiger J, Lang M, Lichtenthaler HK (1996) Differences in fluorescence excitation spectra of leaves between stressed and non-stressed plant. J Plant Physiol 148:536–547

    CAS  Google Scholar 

  • Shelly K, Higgins T, Beardall J, Wood B, McNaughton D, Heraud P (2007) Characterising nutrient-induced fluorescence transients (NIFTs) in nitrogen-stressed Chlorella emersonii (Chlorophyta). Phycologia 46:503–512. doi:10.2216/06-55.1

    Google Scholar 

  • Stober F, Lang M, Lichtenthaler HK (1994) Studies on the blue, green, and red fluorescence emission signatures of green, etiolated, and white leaves. Remote Sens Environ 47:65–71. doi:10.1016/0034-4257(94)90129-5

    Google Scholar 

  • Subhash N, Wenzel O, Lichtenthaler HK (1999) Changes in blue-green and chlorophyll fluorescence emission and fluorescence ratios during senescence of tobacco plants. Remote Sens Environ 69:215–223. doi:10.1016/S0034-4257(99)00029-2

    Google Scholar 

  • Takeuchi A, Saito Y, Kanoh M, Kawahara TD, Nomura A, Ishizawa H, Matsuzawa T, Komatsu K (2002) Laser-induced fluorescence detection of plant and optimal harvest time of agricultural products (lettuce). Am Soc Agric Eng 18(3):361–366

    Google Scholar 

  • Tartachnyk I, Rademacher I (2003) Estimation of nitrogen deficiency of sugar beet and wheat using parameters of laser induced and pulse amplitude modulated chlorophyll fluorescence. J Appl Botany-Angewandte Botanik 77:61–67

    CAS  Google Scholar 

  • Tartachnyk I, Rademacher I, Kuhbauch W (2006) Distinguishing nitrogen deficiency and fungal infection of winter wheat by laser-induced fluorescence. Precis Agric 7:281–293

    Google Scholar 

  • Tartachnyk I, Blanke MM, Jackson MB (2007) Effect of hail on photosynthesis, chlorophyll fluorescence, stomatal closure and evapotranspiration of apple leaves. Acta Hortic 732:543–547

    CAS  Google Scholar 

  • Thoren D, Schmidhalter U (2009) Nitrogen status and biomass determination of oilseed rape by laser-induced chlorophyll fluorescence. Eur J Agron 30:238–242. doi:10.1016/j.eja.2008.12.001

    CAS  Google Scholar 

  • Thoren D, Thoren P, Schmidhalter U (2010) Influence of ambient light and temperature on laser-induced chlorophyll fluorescence measurements. Eur J Agron 32:169–176. doi:10.1016/j.eja.2009.10.003

    CAS  Google Scholar 

  • Tremblay N (2004) Determining nitrogen requirements from crops characteristics. Benefits and challenges. Recent Research Development in Agronomy & Horticulture 1. Chapter 9, pp 157–182

  • Tremblay N, Wang Z, Bélec C (2007) Evaluation of the Dualex for the assessment of corn nitrogen status. J Plant Nutr 30:1355–1369. doi:10.1080/01904160701555689

    CAS  Google Scholar 

  • Tremblay N, Wang Z, Bélec C (2010) Performance of Dualex in spring wheat for crop nitrogen status assessment, yield prediction and estimation of soil nitrate content. J Palnt Nutr 33(1):57–70. doi:10.1080/01904160903391081

    CAS  Google Scholar 

  • Valentini R, Cecchi G, Mazzinghi P, Mugnozza GS, Agati G, Bazzani M, De Angelis P, Fusi F, Matteucci G, Raimondi V (1994) Remote sensing of chlorophyll a fluorescence of vegetation canopies: 2. Physiological significance of fluorescence signal in response to environmental stresses. Remote Sens Environ 47:29–35. doi:10.1016/0034-4257(94)90124-4

    Google Scholar 

  • Wagner H, Gilbert M, Wilhelm C (2003) Longitudinal leaf gradients of UV-absorbing screening pigments in barley (Hordeum vulgare). Physiol Plant 117:383–391. doi:10.1034/j.1399-3054.2003.00045.x

    PubMed  CAS  Google Scholar 

  • Xu ZZ, Zhou GS, Wang YL, Han GX, Li YJ (2008) Changes in chlorophyll fluorescence in maize plants with imposed rapid dehydration at different leaf ages. J Plant Growth Regul 27:83–92. doi:10.1007/s00344-007-9035-2

    CAS  Google Scholar 

  • Zarco-Tejada PJ, Miller JR, Mohammed GH, Noland TL, Sampson PH (2002) Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery. J Environ Qual 31:1433–1441. doi:10.2134/jeq2002.1433

    PubMed  CAS  Google Scholar 

  • Zarco-Tejada PJ, Berni JAJ, Suarez L, Sepulcre-Cantó G, Morales F, Miller JR (2009) Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection. Remote Sens Environ 113:1262–1275. doi:10.1016/j.rse.2009.02.016

    Google Scholar 

  • Zhang YP, Tremblay N (2010) Evaluation of the Multiplex® fluorescence sensor for the assessment of corn nitrogen status. 10th International Conference on Precision Agriculture, Denver, Colorado, July 18–21, 2010, CD-ROM, p 9

Download references

Acknowledgments

The first author would like to thank Drs. Alexander Dudelzak and Sergei Babichenko for their guidance, as well as Drs. Giovanna Cecchi, Valentina Raimondi, and Giovanni Agati for hosting his OECD fellowship and the late Dr. Jürgen Wollring for his support. Z.G.C. contribution for this paper was supported by the CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Tremblay.

About this article

Cite this article

Tremblay, N., Wang, Z. & Cerovic, Z.G. Sensing crop nitrogen status with fluorescence indicators. A review. Agron. Sustain. Dev. 32, 451–464 (2012). https://doi.org/10.1007/s13593-011-0041-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-011-0041-1

Keywords

Navigation