Skip to main content
Log in

The Janus Face of Resveratrol in Astroglial Cells

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Astroglial cells are key modulators of neuropathology events. Resveratrol, a redox-active compound present in grapes and wine, has a wide range of biological effects. The aim of this study was to investigate whether resveratrol is able to prevent hydrogen peroxide (H2O2)-induced oxidative damage in C6 astroglial cells. We found that following a short oxidative insult (Model I—1 mM H2O2/30 min), resveratrol increased glutamate uptake (60%), glutamine synthetase (GS) (139%), glutathione (GSH) (120%), and S100B secretion (24%); and attenuated DCFH oxidation (34%) as compared to H2O2 values. Under less intense (0.1 mM H2O2), but lasting (6 h) insult (Model II), resveratrol had an opposite effect, potentiating the H2O2-induced decrease in glutamate uptake (from 34 to 63%), in GS (from 22 to 50%), in GSH (from 22 to 54%), and also potentiating DCFH oxidation (from 24 to 38%). The transcription factor, NF-κB, was activated in both models. Cell morphology alterations were also observed in the presence of H2O2 with process-bearing cells, accompanied by cell body retraction and actin reorganization. This effect was not prevented by resveratrol, but was prevented by lysophosphatidic acid (LPA), a specific upstream positive regulator of Rho A. In summary, these findings showed that resveratrol, a redox-active compound, was able to modulate important neurotrophic function of astroglial cells under different oxidative conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Atten MJ, Godoy-Romero E, Attar BM, Milson T, Zopel M, Holian O (2005) Resveratrol regulates cellular PKC alpha and delta to inhibit growth and induce apoptosis in gastric cancer cells. Invest New Drugs 23:111–119

    Article  PubMed  CAS  Google Scholar 

  • Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653

    Article  PubMed  CAS  Google Scholar 

  • Ballard DW, Walker WH, Doerre S, Sista P, Molitor JA, Dixon EP, Peffer NJ, Hannink M, Greene WC (1990) The v-rel oncogene encodes a kappa B enhancer binding protein that inhibits NF-kappa B function. Cell 63:803–814

    Article  PubMed  CAS  Google Scholar 

  • Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  PubMed  CAS  Google Scholar 

  • Baur JA et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  PubMed  CAS  Google Scholar 

  • Benda P, Lightbody J, Sato G, Levine L, Sweet W (1968) Differentiated rat glial cell strain in tissue culture. Science 161:370–371

    Article  PubMed  CAS  Google Scholar 

  • Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352

    PubMed  CAS  Google Scholar 

  • Bull ND, Wood JP, Osborne NN, Barnett NL (2007) Protein kinase C-mediated modulation of glutamate transporter activity in rat retina. Curr Eye Res 32:123–131

    Article  PubMed  CAS  Google Scholar 

  • Castagne V, Gautschi M, Lefevre K, Posada A, Clarke PG (1999) Relationships between neuronal death and the cellular redox status. Focus on the developing nervous system. Prog Neurobiol 59:397–423

    Article  PubMed  CAS  Google Scholar 

  • Cechin SR, Gottfried C, Prestes CC, Andrighetti L, Wofchuk ST, Rodnight R (2002) Astrocyte stellation in saline media lacking bicarbonate: possible relation to intracellular pH and tyrosine phosphorylation. Brain Res 946:12–23

    Article  PubMed  CAS  Google Scholar 

  • Czyz M (2005) Specificity and selectivity of the NFkappaB response. Postepy Biochem 51:60–68

    PubMed  CAS  Google Scholar 

  • de Almeida LM, Pineiro CC, Leite MC, Brolese G, Tramontina F, Feoli AM, Gottfried C, Goncalves CA (2007) Resveratrol increases glutamate uptake, glutathione content, and S100B secretion in cortical astrocyte cultures. Cell Mol Neurobiol 27:661–668

    Article  PubMed  Google Scholar 

  • De la Lastra CA, Villegas I (2007) Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem Soc Trans 35:1156–1160

    Article  PubMed  Google Scholar 

  • de Souza DF, Leite MC, Quincozes-Santos A, Nardin P, Tortorelli LS, Rigo MM, Gottfried C, Leal RB, Goncalves CA (2009) S100B secretion is stimulated by IL-1beta in glial cultures and hippocampal slices of rats: likely involvement of MAPK pathway. J Neuroimmunol 206:52–57

    Article  PubMed  Google Scholar 

  • Delmas D, Jannin B, Latruffe N (2005) Resveratrol: preventing properties against vascular alterations and ageing. Mol Nutr Food Res 49:377–395

    Article  PubMed  CAS  Google Scholar 

  • Donato R (2001) S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 33:637–668

    Article  PubMed  CAS  Google Scholar 

  • dos Santos AQ, Nardin P, Funchal C, de Almeida LM, Jacques-Silva MC, Wofchuk ST, Goncalves CA, Gottfried C (2006) Resveratrol increases glutamate uptake and glutamine synthetase activity in C6 glioma cells. Arch Biochem Biophys 453:161–167

    Article  PubMed  Google Scholar 

  • Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671

    Article  PubMed  CAS  Google Scholar 

  • Dringen R, Hamprecht B (1997) Involvement of glutathione peroxidase and catalase in the disposal of exogenous hydrogen peroxide by cultured astroglial cells. Brain Res 759:67–75

    Article  PubMed  CAS  Google Scholar 

  • Dringen R, Pawlowski PG, Hirrlinger J (2005) Peroxide detoxification by brain cells. J Neurosci Res 79:157–165

    Article  PubMed  CAS  Google Scholar 

  • Feng Z, Zhang JT (2004) Protective effect of melatonin on beta-amyloid-induced apoptosis in rat astroglioma C6 cells and its mechanism. Free Radic Biol Med 37:1790–1801

    Article  PubMed  CAS  Google Scholar 

  • Fremont L (2000) Biological effects of resveratrol. Life Sci 66:663–673

    Article  PubMed  CAS  Google Scholar 

  • Funchal C, Dos Santos AQ, Jacques-Silva MC, Zamoner A, Gottfried C, Wajner M, Pessoa-Pureur R (2005) Branched-chain alpha-keto acids accumulating in maple syrup urine disease induce reorganization of phosphorylated GFAP in C6-glioma cells. Metab Brain Dis 20:205–217

    Article  PubMed  CAS  Google Scholar 

  • Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505

    Article  PubMed  CAS  Google Scholar 

  • Goncalves CA, Concli Leite M, Nardin P (2008) Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin Biochem 41:755–763

    Article  PubMed  CAS  Google Scholar 

  • Gottfried C, Tramontina F, Goncalves D, Goncalves CA, Moriguchi E, Dias RD, Wofchuk ST, Souza DO (2002) Glutamate uptake in cultured astrocytes depends on age: a study about the effect of guanosine and the sensitivity to oxidative stress induced by H(2)O(2). Mech Ageing Dev 123:1333–1340

    Article  PubMed  CAS  Google Scholar 

  • Guasch RM, Tomas M, Minambres R, Valles S, Renau-Piqueras J, Guerri C (2003) RhoA and lysophosphatidic acid are involved in the actin cytoskeleton reorganization of astrocytes exposed to ethanol. J Neurosci Res 72:487–502

    Article  PubMed  CAS  Google Scholar 

  • Had-Aissouni L, Re DB, Nieoullon A, Kerkerian-Le Goff L (2002) Importance of astrocytic inactivation of synaptically released glutamate for cell survival in the central nervous system—are astrocytes vulnerable to low intracellular glutamate concentrations? J Physiol Paris 96:317–322

    Article  PubMed  CAS  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Brasier AR (1997) Mechanism for biphasic rel A. NF-kappaB1 nuclear translocation in tumor necrosis factor alpha-stimulated hepatocytes. J Biol Chem 272:9825–9832

    Article  PubMed  CAS  Google Scholar 

  • He F, Sun YE (2007) Glial cells more than support cells? Int J Biochem Cell Biol 39:661–665

    Article  PubMed  CAS  Google Scholar 

  • Hertz L (2006) Glutamate, a neurotransmitter—and so much more. A synopsis of Wierzba III. Neurochem Int 48:416–425

    PubMed  CAS  Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220

    Article  PubMed  CAS  Google Scholar 

  • Kleindienst A, Ross Bullock M (2006) A critical analysis of the role of the neurotrophic protein S100B in acute brain injury. J Neurotrauma 23:1185–1200

    Article  PubMed  Google Scholar 

  • Kranenburg O, Moolenaar WH (2001) Ras-MAP kinase signaling by lysophosphatidic acid and other G protein-coupled receptor agonists. Oncogene 20:1540–1546

    Article  PubMed  CAS  Google Scholar 

  • Kundu JK, Surh YJ (2004) Molecular basis of chemoprevention by resveratrol: NF-kappaB and AP-1 as potential targets. Mutat Res 555:65–80

    PubMed  CAS  Google Scholar 

  • Leite MC, Galland F, Brolese G, Guerra MC, Bortolotto JW, Freitas R, Almeida LM, Gottfried C, Goncalves CA (2008) A simple, sensitive and widely applicable ELISA for S100B: methodological features of the measurement of this glial protein. J Neurosci Methods 169:93–99

    PubMed  CAS  Google Scholar 

  • Lortet S, Samuel D, Had-Aissouni L, Masmejean F, Kerkerian-Le Goff L, Pisano P (1999) Effects of PKA and PKC modulators on high affinity glutamate uptake in primary neuronal cell cultures from rat cerebral cortex. Neuropharmacology 38:395–402

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mangoura D, Sakellaridis N, Jones J, Vernadakis A (1989) Early and late passage C-6 glial cell growth: similarities with primary glial cells in culture. Neurochem Res 14:941–947

    Article  PubMed  CAS  Google Scholar 

  • Markiewicz I, Lukomska B (2006) The role of astrocytes in the physiology and pathology of the central nervous system. Acta Neurobiol Exp (Wars) 66:343–358

    Google Scholar 

  • McBean GJ, Roberts PJ (1985) Neurotoxicity of l-glutamate and dl-threo-3-hydroxyaspartate in the rat striatum. J Neurochem 44:247–254

    Article  PubMed  CAS  Google Scholar 

  • McKenna MC (2007) The glutamate–glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85:3347–3358

    Article  PubMed  CAS  Google Scholar 

  • Murias M, Jager W, Handler N, Erker T, Horvath Z, Szekeres T, Nohl H, Gille L (2005) Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: structure–activity relationship. Biochem Pharmacol 69:903–912

    Article  PubMed  CAS  Google Scholar 

  • Nakano H, Nakajima A, Sakon-Komazawa S, Piao JH, Xue X, Okumura K (2006) Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell Death Differ 13:730–737

    Article  PubMed  CAS  Google Scholar 

  • Papa S, Bubici C, Zazzeroni F, Pham CG, Kuntzen C, Knabb JR, Dean K, Franzoso G (2006) The NF-kappaB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ 13:712–729

    Article  PubMed  CAS  Google Scholar 

  • Parker KK, Norenberg MD, Vernadakis A (1980) “Transdifferentiation” of C6 glial cells in culture. Science 208:179–181

    Article  PubMed  CAS  Google Scholar 

  • Pervaiz S (2004) Chemotherapeutic potential of the chemopreventive phytoalexin resveratrol. Drug Resist Updat 7:333–344

    Article  PubMed  CAS  Google Scholar 

  • Quincozes-Santos A, Andreazza AC, Nardin P, Funchal C, Goncalves CA, Gottfried C (2007) Resveratrol attenuates oxidative-induced DNA damage in C6 Glioma cells. Neurotoxicology 28:886–891

    Article  PubMed  CAS  Google Scholar 

  • Rothstein JD, Martin LJ, Kuncl RW (1992) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 326:1464–1468

    PubMed  CAS  Google Scholar 

  • Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911

    Article  PubMed  CAS  Google Scholar 

  • Silverstein FS, Buchanan K, Johnston MV (1986) Perinatal hypoxia-ischemia disrupts striatal high-affinity [3H]glutamate uptake into synaptosomes. J Neurochem 47:1614–1619

    Article  PubMed  CAS  Google Scholar 

  • Sinha K, Chaudhary G, Gupta YK (2002) Protective effect of resveratrol against oxidative stress in middle cerebral artery occlusion model of stroke in rats. Life Sci 71:655–665

    Article  PubMed  CAS  Google Scholar 

  • Slater SJ, Seiz JL, Cook AC, Stagliano BA, Buzas CJ (2003) Inhibition of protein kinase C by resveratrol. Biochim Biophys Acta 1637:59–69

    PubMed  CAS  Google Scholar 

  • Soleas GJ, Diamandis EP, Goldberg DM (1997) Resveratrol: a molecule whose time has come? And gone? Clin Biochem 30:91–113

    Article  PubMed  CAS  Google Scholar 

  • Tramontina F, Leite MC, Goncalves D, Tramontina AC, Souza DF, Frizzo JK, Nardin P, Gottfried C, Wofchuk ST, Goncalves CA (2006) High glutamate decreases S100B secretion by a mechanism dependent on the glutamate transporter. Neurochem Res 31:815–820

    Article  PubMed  CAS  Google Scholar 

  • Van Eldik LJ, Wainwright MS (2003) The Janus face of glial-derived S100B: beneficial and detrimental functions in the brain. Restor Neurol Neurosci 21:97–108

    PubMed  Google Scholar 

  • Vieira de Almeida LM, Pineiro CC, Leite MC, Brolese G, Leal RB, Gottfried C, Goncalves CA (2008) Protective effects of resveratrol on hydrogen peroxide induced toxicity in primary cortical astrocyte cultures. Neurochem Res 33:8–15

    Article  PubMed  Google Scholar 

  • Virgili M, Contestabile A (2000) Partial neuroprotection of in vivo excitotoxic brain damage by chronic administration of the red wine antioxidant agent, trans-resveratrol in rats. Neurosci Lett 281:123–126

    Article  PubMed  CAS  Google Scholar 

  • Zhu D, Tan KS, Zhang X, Sun AY, Sun GY, Lee JC (2005) Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. J Cell Sci 118:3695–3703

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and FINEP/Rede IBN 01.06.0842-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmem Gottfried.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quincozes-Santos, A., Nardin, P., de Souza, D.F. et al. The Janus Face of Resveratrol in Astroglial Cells. Neurotox Res 16, 30–41 (2009). https://doi.org/10.1007/s12640-009-9042-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9042-0

Keywords

Navigation