Skip to main content
Log in

Immune Modulation Capability of Exopolysaccharides Synthesised by Lactic Acid Bacteria and Bifidobacteria

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

During recent years, the exopolysaccharides (EPS) produced by some strains of lactic acid bacteria and bifidobacteria have attracted the attention of researchers, mainly due to their potential technological applications. However, more recently, it has been observed that some of these EPS present immunomodulatory properties, which suggest a potential effect on human health. Whereas EPS from lactic acid bacteria have been studied in some detail, those of bifidobacteria largely remain uncharacterized in spite of the ubiquity of EPS genes in Bifidobacterium genomes. In this review, we have analysed the data collected in the literature about the potential immune-modulating capability of EPS produced by lactic acid bacteria and bifidobacteria. From this data analysis, as well as from results obtained in our group, a hypothesis relating the physicochemical characteristics of EPS with their immune modulation capability was highlighted. We propose that EPS having negative charge and/or small size (molecular weight) are able to act as mild stimulators of immune cells, whereas those polymers non-charged and with a large size present a suppressive profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abbad-Andaloussi S, Talbaoui H, Marczak R, Nonay R (1995) Isolation and characterization of exocellular polysaccharides produced by Bifidobacterium longum. Appl Microbiol Biotechnol 43:995–1000

    Article  CAS  Google Scholar 

  2. Amrouche T, Boutin Y, Prioult G, Fliss I (2006) Effects of bifidobacterial cytoplasm, cell wall and expolysaccharide on mouse lymphocyte proliferation and cytokine production. Int Dairy J 16:70–80

    Article  CAS  Google Scholar 

  3. Arboleya S, Salazar N, Ruas-Madiedo P, de los Reyes-Gavilán CG, Gueimonde M (2012) Development of probiotic products for nutritional requirements of specific human population. Eng Life Sci 12:368–376

    Google Scholar 

  4. Bleau C, Monges A, Rashidan K, Laverdure J-P, Lacroix M, Van Calsteren M-R, Millette M, Savard R, Lamontagne L (2010) Intermediate chains of exopolysaccharides from Lactobacillus rhamnosus RW-9595M increase IL-10 production by macrophages. J Appl Microbiol 108:666–675

    Article  CAS  Google Scholar 

  5. Broadbent JR, McMahon DJ, Welker DL, Oberg CJ, Moineau S (2003) Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review. J Dairy Sci 86:407–423

    Article  CAS  Google Scholar 

  6. Cescutti P (2009) Bacterial capsular polysaccharides and exopolysaccharides. In: Moran A, Holst O, Brennan PJ, von Itzstein M (eds) Microbial glycobiology. Structures, relevance and applications. Academic Press, Elsevier, London, pp 93–108

    Google Scholar 

  7. Denou E, Pridmore RD, Berger B, Panoff JM, Arigoni F, Brüssow H (2008) Identification of genes associated with the long-gut-persistence phenotype of the probiotic Lactobacillus johnsonii strain NCC522 using a combination of genomic and transcriptomic analysis. J Bacteriol 190:3161–3168

    Article  CAS  Google Scholar 

  8. Deutsch S-M, Le Bivic P, Hervé C, Madec M-N, LaPointe G, Jan G, Le Loir Y, Falentin H (2010) Correlation of the capsular phenotype in Propionibacterium freudenreichii with the level of expression of gtf, a unique polysaccharide synthase-encoding gene. Appl Environ Microbiol 76:2740–2746

    Article  CAS  Google Scholar 

  9. Deutsch S-M, Parayre S, Bouchoux A, Guymarc’h F, Dewulf J, Dols-Lafargue M, Baglinier F, Cousin FJ, Falentin H, Jan G, Foligné B (2012) Contribution of surface β-glucan polysaccharide to physicochemical and immunomodulatory properties of Propionibacterium freudenreichii. Appl Environ Microbiol 78:1765–1775

    Article  CAS  Google Scholar 

  10. De Vuyst L, Weckx S, Ravyts F, Herman L, Leroy F (2011) New insights into the exopolysaccharide production of Streptococcus thermophilus. Int Dairy J 21:586–591

    Article  Google Scholar 

  11. Dols-Lafarge M, Lee HY, Le Marrec C, Heyraud A, Chambat G, Lonvaud-Funel A (2008) Characterization of gtf, a glucosyltransferase gene in the genomes of Pediococcus parvulus and Oenococcus oeni, two bacterial species commonly found in wine. Appl Environ Microbiol 74:4079–4090

    Article  Google Scholar 

  12. Faber EJ, van Haaster DJ, Kamerling JP, Vliegenthart JFG (2002) Characterization of the exopolysaccharide produced by Streptococcus thermophilus 8S containing an open chain nononic acid. Eur J Biochem 269:5590–5598

    Article  CAS  Google Scholar 

  13. Falch BH, Espevik T, Ryan L, Stokke B (2000) The cytokine stimulating activity of (1 → 3)-β-D-glucans is dependent on the triple helix conformation. Carbohyd Res 329:587–596

    Article  CAS  Google Scholar 

  14. Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D, O’Connell-Motherway M, Shanahan F, Nally K, Dougan G, van Sinderen D (2012) Bifidobacterial surface-expolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci USA 109:2108–2113

    Article  CAS  Google Scholar 

  15. FAO/WHO (2006) Probiotics in food. Health and nutritional properties and guidelines for evaluation. FAO Food and Nutritional paper No. 85 (ISBN 92-5-105513-0)

  16. Felis GE, Dellaglio F (2007) Taxonomy of lactobacilli and bifidobacteria. Curr Issues Intest Microbiol 8:44–61

    CAS  Google Scholar 

  17. Fernández de Palencia P, Werning ML, Sierra-Filardi E, Dueñas MT, Irastorza A, Corbí A, López P (2009) Probiotic properties of the 2-substituted (1,3)-β-glucan-producing bacterium Pediococcus parvulus 2.6. Appl Environ Microbiol 75:4887–4891

    Article  Google Scholar 

  18. Fonseca FL, Nohara LL, Cordero RJB, Frases S, Casadevall A, Almeida IC, Nimrichter L, Rodrigues ML (2010) Immunomodulatory effects of serotype B glucuronoxylomannan from Cryptococcus dattii correlate with polysaccharide diameter. Infect Immun 78:3861–3870

    Article  Google Scholar 

  19. Habu Y, Nagaoka M, Yokokura T, Azuma I (1987) Structural studies of cell wall polysaccharides from Bifidobacterium breve YIT 4010 and related Bifidobacterium species. J Biochem 102:1423–1432

    CAS  Google Scholar 

  20. Hassan AN (2008) Possibilities and challenges of exopolysaccharide-producing lactic cultures in dairy foods. J Dairy Sci 91:1282–1298

    Article  CAS  Google Scholar 

  21. Holst O, Moran AP, Brennan PJ (2009) Overview of the glycosylated components of the bacterial cell envelope. In: Moran A, Holst O, Brennan PJ, von Itzstein M (eds) Microbial glycobiology. Structures, relevance and applications. Academic Press, Elsevier, London, pp 3–13

    Google Scholar 

  22. Jeon JG, Rosalen PL, Falsetta ML, Koo H (2011) Natural products in caries research: current (limited) knowledge, challenges and future perspective. Caries Res 45:243–263

    Article  Google Scholar 

  23. Jolly L, Stingelle F (2001) Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria. Int Dairy J 11:733–745

    Article  CAS  Google Scholar 

  24. Khan S, Mukherjee A, Chandrasekaran N (2011) Silver nonoparticles tolerant bacteria from sewage environment. Environ Sci (China) 23:346–352

    Article  CAS  Google Scholar 

  25. Kitazawa H, Itoh T, Tamioaka Y, Mizugaki M, Yamaguchi T (1996) Induction of IFN-γ and IL-1α production in macrophages stimulated with phosphopolysaccharide produced by Lactococcus lactis ssp. cremoris. Int J Food Microbiol 31:99–106

    Article  CAS  Google Scholar 

  26. Kitazawa H, Harata T, Uemura J, Saito T, Kaneko T, Itoh T (1998) Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Int J Food Microbiol 40:169–175

    Article  CAS  Google Scholar 

  27. Kohno M, Suzuki S, Kanaya T, Yoshino T, Matsuura Y, Asada M, Kitamura S (2009) Structural characterization of the extracellular polysaccharide produced by Bifidobacterium longum JBL05. Carbohydr Polym 77:351–357

    Article  CAS  Google Scholar 

  28. Korakli M, Vogel RF (2006) Structure/function relationship of homopolysaccharides produced glycansucrases and therapeutic potential for their synthesized glycans. Appl Microbiol Biotechnol 71:790–803

    Article  CAS  Google Scholar 

  29. Lebeer S, Claes IJJ, Verhoeven TLA, Vanderleyden J, De Keersmaecker SCJ (2010) Exopolysacchrides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microb Biotechnol 4:368–374

    Article  Google Scholar 

  30. Lee JH, O’Sullivan DJ (2010) Genomic insights into bifidobacteria. Microbiol Mol Biol Rev 74:378–416

    Article  CAS  Google Scholar 

  31. Leivers S, Hidalgo-Cantabrana C, Robinson G, Margolles A, Ruas-Madiedo P, Laws AP (2011) Structure of the high molecular weight exopolysaccharide produced by Bifidobacterium animalis subps. lactis IPLA-R1 and sequence analysis of its putative eps cluster. Carbohydr Res 346:2710–2717

    Article  CAS  Google Scholar 

  32. López P, Monteserín DC, Gueimonde M, de los Reyes-Gavilán CG, Margolles A, Suárez A, Ruas-Madiedo P (2012) Exopolysaccharide-producing Bifidobacterium strains elicit different in vitro responses upon interaction with human cells. Food Res Int 46:99–107

    Article  Google Scholar 

  33. Low D, Ahlgren JA, Horne D, McMahon DJ, Oberg CJ, Broadbent JR (1998) Role of Streptococcus thermophilus MR-1C capsular exopolysaccharide in cheese moisture retention. Appl Environ Microbiol 64:2147–2251

    CAS  Google Scholar 

  34. Margolles A, Mayo B, Ruas-Madiedo P (2009) Screening, identification and characterization of Lactobacillus and Bifidobacterium strains. In: Lee YK, Salminen S (eds) Handbook of probiotics and prebiotics, 2nd edn. Wiley, New Jersey, pp 4–24

    Google Scholar 

  35. Mazmanian S, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–625

    Article  CAS  Google Scholar 

  36. McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S (2012) Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 10:39–50

    CAS  Google Scholar 

  37. McLoughlin RM, Kasper DL (2009) Immunomodulation by zwitterionic polysaccharides. In: Moran A, Holst O, Brennan PJ, von Itzstein M (eds) Microbial glycobiology. Structures, relevance and applications. Academic Press, Elsevier, London, pp 957–980

    Google Scholar 

  38. Moran A, Holst O, Brennan PJ, von Itzstein M (2009) Microbial glycobiology. Structures, relevance and applications. Academic Press, Elsevier, London

    Google Scholar 

  39. Monsan P, Bozonnet S, Albenne C, Joucla G, Willemot RM, Remaud-Siméon M (2001) Homopolysaccharides fom lactic acid bacteria. Int Diary J 11:675–685

    Article  CAS  Google Scholar 

  40. Nagaoka M, Hahimoto S, Shibata H, Kimura I, Kimura K, Sawada H, Yokokura T (1996) Structure of a galactan from cell walls of Bifidobacterium catenulatum YIT4016. Carbohydr Res 281:285–291

    Article  CAS  Google Scholar 

  41. Nagaoka M, Shibata H, Kimura I, Hashimoto S, Kimura K, Sawada H, Yokokura T (1995) Structural studies on a cell wall polysaccharide from Bifidobacterium longum YIT4028. Carbohydr Res 274:245–249

    Article  CAS  Google Scholar 

  42. Nakajima H, Hirota T, Toba T, Itoh T, Adachi S (1992) Structure of extracellular polysaccharide from slime-forming Lactococcus lactis subsp. cremoris SBT 0495. Carbohydr Res 224:245–253

    Article  CAS  Google Scholar 

  43. Nikolic M, López P, Strahinic I, Suárez A, Kojic M, Fernández-García M, Topisirovic L, Golic N, Ruas-Madiedo P (2012) Characterization of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics. Int J Food Microbiol 158:155–162

    Article  CAS  Google Scholar 

  44. Nishimura-Uemura J, Kitazawa H, Kawai Y, Itoh T, Oda M, Saito T (2003) Functional alteration of mucrine macrophages stimulated with extracellular polysaccharides from Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Food Microbiol 20:267–273

    Article  CAS  Google Scholar 

  45. Poli A, Di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea. Article ID 693253: 1–13

  46. Prasanna PHP, Grandison AS, Charalampopoulos D (2012) Screening human intestinal Bifidobacterium strains for growth, acidification, EPS production and viscosity potential in low-fat milk. Int Dairy J 23:36–44

    Article  CAS  Google Scholar 

  47. Rehm BH (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592

    Article  CAS  Google Scholar 

  48. Roberts CM, Fett WF, Osman SF, Wijey C, O’Connor JV, Hoover DG (1995) Exopolysaccharide production by Bifidobacterium longum BB-79. J Appl Biotechnol 78:463–468

    CAS  Google Scholar 

  49. Rodríguez-Carvajal MA, Sánchez JI, Campelo AB, Martínez B, Rodríguez A, Gil-Serrano AM (2008) Structure of the high-molecular weight exopolysaccharide isolated from Lactobacillus pentosus LPS26. Carbohydr Res 343:3066–3070

    Article  Google Scholar 

  50. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Microbiol 9:313–323

    CAS  Google Scholar 

  51. Round JL, Mazmanina SK (2010) Inducible Foxp3 + regulatory T-cell development by a commensal bacterium of the intestinal microbiota. PNAS 107:12204–12209

    Article  CAS  Google Scholar 

  52. Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, Mazmanian SK (2011) The Toll-like receptor 2 pathway established colonization by a commensal of the human microbiota. Science 322:974–977

    Article  Google Scholar 

  53. Ruas-Madiedo P, Moreno JA, Salazar N, Delgado S, Mayo B, Margolles A, de los Reyes-Gavilán CG (2007) Screening of exopolysaccharide-producing Lactobacillus and Bifidobacterium strains isolated from the human intestinal microbiota. Appl Environ Microbiol 73:4385–4388

    Article  CAS  Google Scholar 

  54. Ruas-Madiedo P, Gueimonde M, Arigoni F, de los Reyes-Gavilán CG, Margolles A (2009) Bile affects the synthesis of exopolysaccharides by Bifidobacterium animalis. Appl Environ Microbiol 75:1204–1207

    Article  CAS  Google Scholar 

  55. Ruas-Madiedo P, Salazar N, de los Reyes-Gavilán CG (2009) Exopolysaccharides produced by lactic acid bacteria in food and probiotic applications. In: Moran A, Holst O, Brennan PJ, von Itzstein M (eds) Microbial glycobiology. Structures, relevance and applications. Academic Press Elsevier, London, pp 887–902

    Google Scholar 

  56. Ruas-Madiedo P, Salazar N, de los Reyes-Gavilán CG (2009) Biosynthesis and chemical composition of expolysaccharides produced by lactic acid bacteria. In: Ullrich M (ed) Bacterial polysaccharides. Current innovations and futures trends. Caister Academic Press, Norfolk, pp 279–310

    Google Scholar 

  57. Ruas-Madiedo P, Medrano M, Salazar N, de los Reyes-Gavilán CG, Pérez PF, Abraham AG (2010) Exopolysaccharides produced by Lactobacillus and Bifidobacterium strains abrogate in vitro the cytotoxic effect of bacterial toxins on eukaryotic cells. J Appl Microbiol 109:2079–2086

    Article  CAS  Google Scholar 

  58. Ruas-Madiedo P, Sánchez B, Hidalgo-Cantabrana C, Margolles A, Laws A (2012) Exopolysaccharides from lactic acid bacteria and bifidobacteria. In: Hui YH, Evranuz EO (eds) Handbook of animal-based fermented food and beverage technology, 2nd edn. CRC Press, Florida, pp 125–152

    Chapter  Google Scholar 

  59. Salazar N, Prieto A, Leal JA, Mayo B, Bada-Gancedo JC, de los Reyes-Gavilán CG, Ruas-Madiedo P (2009) Production of exopolysaccharides by Lactobacillus and Bifidobacterium strains of human origin, and metabolic activity of the producing bacteria in milk. J Dairy Sci 92:4158–4168

    Article  CAS  Google Scholar 

  60. Salazar N, Ruas-Madiedo P, Prieto A, Calle L, de los Reyes-Gavilán CG (2012) Characterization of exopolysaccharides produced by Bifidobacterium longum NB667 and its cholate-resistant derivative strain B667dCo. J Agric Food Chem 60:1028–1035

    Article  CAS  Google Scholar 

  61. Sato T, Hishimura-Uemura J, Shimosato T, Kawal Y, Kitazawa H, Saito T (2004) Dextran from Leuconostoc mesenteroides augments immunostimulatory effects by the introduction of phosphate groups. J Food Prot 67:1719–1724

    CAS  Google Scholar 

  62. Sutherland IW (2001) Microbial polysaccharides from Gram-negative bacteria. Int Dairy J 11:663–674

    Article  CAS  Google Scholar 

  63. Taylor CM, Roberts IS (2005) Capsular polysaccharides and their role in virulence. Contrib Microbiol 12:55–66

    Article  CAS  Google Scholar 

  64. Tieking M, Kaditzky S, Valcheva R, Korakli M, Vogel RF, Gänzle MG (2005) Extracellular homopolysaccharides and oligosaccharides from intestinal lactobacilli. J Appl Microbiol 99:692–702

    Article  CAS  Google Scholar 

  65. Tone-Shimura Y, Toida T, Kawashima T (1996) Isolation and structural analysis of polysaccharide containing galactofuranose from the walls of Bifidobacterium infantis. J Bacteriol 178:317–320

    Google Scholar 

  66. Turroni F, Bottacini F, Foroni E, Mulder I, Kim JH, Zomer A, Sánchez B, Bidossi A, Ferrarini A, Giubellini V, Delledonne M, Henrissat B, Coutinho P, Oggioni M, Filzgerald GF, Mills D, Margolles A, Kelly D, van Sinderen D, Ventura M (2010) Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc Natl Acad Sci USA 107:19514–19519

    Article  CAS  Google Scholar 

  67. Uemura J, Itoh T, Kasneko T, Noda K (1998) Chemical characterization of extracellular polysaccharide from Lactobacillus belbrueckii subsp. bulgaricus OLL1073R-1. Milchwissenschaft 53:443–446

    CAS  Google Scholar 

  68. Ullrich M (2009) Bacterial polysaccharides. Current innovations and futures trends. Caister Academic Press, Norfolk

    Google Scholar 

  69. van Calsteren MR, Pau-Roblot C, Be A, Roy D (2002) Structure determination of the exopolysaccharides produced by Lactobacillus rhamnosus strains RW-9595 and R. Biochem J 363:7–17

    Article  Google Scholar 

  70. van Casteren WHM, Dijkema C, Schols HA, Beldman G, Voragen AGJ (1998) Characterization and modification of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris B40. Carbohyd Polym 37:123–130

    Article  Google Scholar 

  71. van Casteren WHM, de Waard P, Dijkema C, Schols HA, Voragen AGJ (2000) Structural characterization and enzymatic modification of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris B891. Carbohyd Res 327:411–422

    Article  Google Scholar 

  72. van Hijum SAFT, Kralj S, Ozimek LK, Dijkhuizen L, van Geel-Schutten IGH (2006) Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 70:157–176

    Article  Google Scholar 

  73. Ventura M, Turroni F, Zomer A, Foroni E, Giubellini V, Bottacini F, Canchaya C, Claesson MJ, He F, Mantzourani M, Mulas L, Ferrarini A, Gao B, Delledonne M, Henrissat B, Coutinho P, Oggioni M, Gupta RS, Zhang Z, Beighton D, Fitzgerald GF, O’Toole PW, van Sinderen D (2009) The Bifidobacterium dentium Bd1 genome sequence reflects its genetic adaptation to human oral cavity. PLoS Genet 5:e1000785

    Article  Google Scholar 

  74. Vinderola G, Perdigón G, Duarte J, Farnworth E, Matar C (2006) Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 36:254–260

    Article  CAS  Google Scholar 

  75. Walling E, Girandeau E, Lonvaud-Funel A (2005) A putative glucan synthase gene dps detected in exopolysaccharides-producing Pediococcus damnosus and Oenococcus oeni strains isolated from wine and cider. Int J Food Microbiol 98:53–62

    Article  CAS  Google Scholar 

  76. Werning ML, Ibarburu I, Dueñas MT, Irastorza A, Navas J, López P (2006) Pediococcus parvulus gtf gene encoding the GTF glycosyltransferase and its application for specific PCR detection of β-D-glucan-producing bacteria in foods and beverages. J Food Prot 69:161–169

    CAS  Google Scholar 

  77. Wu M-H, Pan T-M, Wu Y-J, Chang S-J, Chang M-S, Hu C-Y (2010) Exopolysaccharide activities from probiotic Bifidobacterium: inmmunomodulatory effects (on J774A.1 macrophages) and antimicrobial properties. Int J Food Microbiol 144:104–110

    Article  CAS  Google Scholar 

  78. Yang Z, Staaf M, Huttunen E, Widmalm G (2000) Structure of a viscous exopolysaccharide produced by Lactobacillus helveticus K16. Carbodyd Res 329:465–469

    Article  CAS  Google Scholar 

  79. Yasuda E, Serata M, Tomoyuki S (2008) Suppressive effect on activation of macrophages by Lactobacillus casei strain Shirota genes determining the synthesis of cell wall-associated polysaccharide. Appl Environ Microbiol 74:4746–4755

    Article  CAS  Google Scholar 

  80. Zaragoza O, García-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodríguez-Tudela JL, Casadevall A (2010) Fungal cell gigantism during mammalian infection. PLoS Pathog 6:e1000945. doi:10.1371/Journal.ppat.1000945

    Article  Google Scholar 

  81. Zdorovenko EL, Kachala VV, Sidarenka AV, Izhik AV, Kisileva EP, Shashkov AS, Novik GI, Knirel YA (2009) Structure of the cell wall polysaccharides of probiotic bifidobacteria Bifidobacterium bifidum BIM M-465. Carbohyd Res 344:2417–2420

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work of our group in this research topic was financed by FEDER funds (European Union) and the Spanish “Plan Nacional I+D+I” from the “Ministerio de Ciencia e Innovación” (MICINN) through the project AGL2009-09445. C. Hidalgo-Cantabrana acknowledges his FPI fellowship and P. López her research contract, supported by project AGL2010-14952, both from MICINN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Ruas-Madiedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hidalgo-Cantabrana, C., López, P., Gueimonde, M. et al. Immune Modulation Capability of Exopolysaccharides Synthesised by Lactic Acid Bacteria and Bifidobacteria. Probiotics & Antimicro. Prot. 4, 227–237 (2012). https://doi.org/10.1007/s12602-012-9110-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-012-9110-2

Keywords

Navigation