Skip to main content

Advertisement

Log in

The other, ignored HIV — highly invasive vegetation

  • Review
  • Published:
Food Security Aims and scope Submit manuscript

Abstract

The greatest cost to the farmer in time and variable costs is control of weeds (Highly Invasive Vegetation = HIV). Despite farmer efforts, weeds still result in the greatest crop losses of all biotic constraints. The costs due to this HIV are greatest in the parts of the developing world where manual labor (more typically “femanual”) is used, and the populations are becoming more aged (due to youth abandoning agriculture), or more feeble due to debilitating diseases such as malaria and HIV-AIDS. Two case studies are presented: the previously intractable problems with Striga (witchweed) species in Africa; and rice cultivation and the emerging problems with the labor-saving shift to direct seeding, which has resulted in outbreaks of a weedy/feral form of rice, as well as herbicide-resistant Echinochloa spp. Biotechnology has much to offer as part of the solution to these major HIV problems, whether as transgenic herbicide resistant crops, or as weed resistant crops or through transgenically enhanced weed-specific biocontrol agents. Where necessary, transgenic tricks will also be needed in many cases to prevent transgene flow from crop to related weedy relatives, and possible technologies are described. Ever since the advent of agriculture, solutions to crop protection problems have been effective but ephemeral, and new solutions will be needed in the future. Using mixed solutions leads to solutions lasting synergistically longer, so efforts should be made to use mixed technologies to extend the lifetime of the next generation of sorely needed solutions to the problems of HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. See http://www.agro.basf.com.br/UI/DetalheNoticiasSalaImprensa.aspx?CodNoticia=88

  2. See: http://www.basf.it/ecp1/News_italy/BASF_presenta_Clearfield

References

  • Abayo GO, English T, Eplee RE, Kanampiu FK, Ransom JK, Gressel J (1998) Control of parasitic witchweeds (Striga spp.) on corn (Zea mays) resistant to acetolactate synthase inhibitors. Weed Sci 46:459–466

    CAS  Google Scholar 

  • Akobundu IO (1991) Weeds in human affairs is sub-Saharan Africa. Weed Tech 5:680–690

    Google Scholar 

  • Al-Ahmad H, Gressel J (2006) Mitigation using a tandem construct containing a selectively unfit gene precludes establishment of Brassica napus transgenes in hybrids and backcrosses with weedy Brassica rapa. Plant Biotech J 4:23–33

    Article  CAS  Google Scholar 

  • Al-Ahmad H, Galili S, Gressel J (2005) Poor competitive fitness of transgenically mitigated tobacco in competition with the wild type in a replacement series. Planta 222:372–385

    Article  CAS  PubMed  Google Scholar 

  • Al-Ahmad H, Dwyer J, Moloney M, Gressel J (2006) Mitigation of establishment of Brassica napus transgenes in volunteers using a tandem construct containing a selectively unfit gene. Plant Biotech J 4:7–21

    Article  CAS  Google Scholar 

  • Alokit C (2009) Unlocking the cereal production potential in east Africa by eliminating the Striga threat—the Kilimo trust project. Haustorium 55:10–12

    Google Scholar 

  • Amusan IO, Rich PJ, Menkir A, Housley T, Ejeta G (2008) Resistance to Striga hermonthica in a maize inbred line derived from Zea diploperennis. New Phytol 178:157–166

    Article  PubMed  Google Scholar 

  • Anderson DM, Cox ML (1997) Smicronyx species (Coleoptera: Curculionidae), economically important seed predators of witchweeds (Striga spp.) (Scrophulariaceae) in sub-Saharan Africa. Bull Entomol Res 87:3–17

    Article  Google Scholar 

  • Broster JC, Pratley JE (2006) A decade of monitoring herbicide resistance in Lolium rigidum in Australia. Australian J Exp Agric 46:1151–1160

    Article  CAS  Google Scholar 

  • Carey VF, Hoagland RE, Talbert RE (1997) Resistance mechanism of propanil-resistant barnyardgrass.2. In-vivo metabolism of the propanil molecule. Pesticide Sci 49:333–338

    Article  CAS  Google Scholar 

  • Ciotola M, Watson AK, Hallett SG (1995) Discovery of an isolate of Fusarium oxysporum with potential to control Striga hermonthica in Africa. Weed Res 35:303–309

    Google Scholar 

  • de Framond A, Rich PJ, McMillan J, Ejeta G (2007) Effects on Striga parasitism of transgenic maize armed with RNAi constructs targeting essential S. asiatica genes. In: Ejeta G, Gressel J (eds) Integrating new technologies for Striga control—towards ending the witch hunt. Singapore, World Scientific, pp 185–196

    Google Scholar 

  • De Groote H, Wangare L, Kanampiu FK, Odendo M, Diallo A, Karaya H, Friesen D (2008) The potential of a herbicide resistant maize technology for Striga control in Africa. Agric Syst 97:83–94

    Article  Google Scholar 

  • Doggett H (1988) Sorghum. Longman, Harlow, p 512

    Google Scholar 

  • Ejeta G (2007) The Striga scourge in Africa: a growing pandemic. In: Ejeta G, Gressel J (eds) Integrating new technologies for Striga control—towards ending the witch hunt. World Scientific, Singapore, pp 3–16

    Google Scholar 

  • Ejeta G, Gressel J (eds) (2007) Integrating new technologies for Striga control—towards ending the witch hunt. World Scientific, Singapore

    Google Scholar 

  • Ejeta G, Rich PJ, Mohamed A (2007) Dissecting a complex trait to simpler components for effective breeding of sorghum with a high level of Striga resistance. In: Ejeta G, Gressel J (eds) Integrating new technologies for Striga control—towards ending the witch hunt. World Scientific, Singapore, pp 87–98

    Google Scholar 

  • Elzein A, Kroschel J (2004) Fusarium oxysporum Foxy 2 shows potential to control both Striga hermonthica and S. asiatica. Weed Res 44:433–438

    Article  Google Scholar 

  • Fischer AJ (2009) Scaling out Alternative Rice Establishment Practices to Control Herbicide Resistant Weeds. Annual Report 2008. Comprehensive Rice Research, California, 25 p. Available http://www.carrb.com/08rpt/Fischer%20Systems%20Report%202008.pdf

  • Fischer AJ, Ateh CM, Bayer DE, Hill JE (2000) Herbicide-resistant Echinochloa oryzoides and E. phyllopogon in California Oryza sativa fields. Weed Sci 48:225–230

    Article  CAS  Google Scholar 

  • Foy CL, Jain R, Jacobsohn R (1989) Recent approaches for chemical control of broomrape (Orobanche spp.). Rev Weed Sci 4:123–152

    CAS  Google Scholar 

  • Garcia-Prechac F, Ernst O, Siri-Prieto G, Terra JA (2004) Integrating no-till into crop-pasture rotations in Uruguay. Soil Tillage Res 77:1–13

    Article  Google Scholar 

  • Gealy DR (2005) Gene movement between rice (Oryza sativa) and weedy rice (Oryza sativa)—a US temperate rice perspective. In: Gressel J (ed) Crop ferality and volunteerism. CRC, Boca Raton, pp 323–354

    Google Scholar 

  • Grenier C, Ibrahim Y, Haussmann BIG, Kiambi D, Ejeta G (2007) Marker-assisted selection for Striga resistance in sorghum. In: Ejeta G, Gressel J (eds) Integrating new technologies for Striga control—towards ending the witch hunt. World Scientific, Singapore, pp 159–171

    Google Scholar 

  • Gressel J (1988) Multiple resistances to wheat selective herbicides: new challenges to molecular biology. Oxf Surv Plant Mol Cell Biol 5:195–203

    CAS  Google Scholar 

  • Gressel J (1999) Tandem constructs: preventing the rise of superweeds. Trends Biotechnol 17:361–366

    Article  CAS  PubMed  Google Scholar 

  • Gressel J (2002) Molecular Biology of Weed Control. Taylor & Francis, London, p 520

    Google Scholar 

  • Gressel J (2005) Problems in qualifying and quantifying assumptions in plant protection models: resultant simulations can be mistaken by a factor of million. Crop Protect 24:1007–1015

    Article  Google Scholar 

  • Gressel J (2008) Genetic glass ceilings: transgenics for crop biodiversity. Johns Hopkins University, Baltimore

    Google Scholar 

  • Gressel J (2009) Crops with target site herbicide resistance for Orobanche and Striga control. Pest Mgmt Sci 65:560–565

    Article  CAS  Google Scholar 

  • Gressel J, Joel DM (1997) Use of glyphosate salts in seed dressing herbicidal compositions. US Patent: 6(096):686

    Google Scholar 

  • Gressel J, Valverde BE (2009) A strategy to provide long-term control of weedy rice while mitigating herbicide resistance transgene flow, and its potential use for other crops with related weeds. Pest Mgmt Sci 65:723–731

    Article  CAS  Google Scholar 

  • Gressel J, Segel LE, Ransom JK (1996) Managing the delay of evolution of herbicide resistance in parasitic weed. Intl J Pest Mgmt 42:113–129

    Article  Google Scholar 

  • Hearne SJ (2009) Control—the Striga conundrum. Pest Mgmt Sci 65:603–614

    Article  CAS  Google Scholar 

  • Holm LG, Plucknett JD, Pancho LV, Herberger JP (1977) The World’s Worst Weeds, Distribution and Biology. University Press of Hawaii, Honolulu 609 pp

    Google Scholar 

  • Huang B-q, Gressel J (1997) Barnyardgrass (Echinochloa crus-galli) resistance to both butachlor and thiobencarb in China. Resistant Pest Mgmt 9:5–7 summer

    Google Scholar 

  • Huang GZ, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 103:14302–14306

    Article  CAS  PubMed  Google Scholar 

  • Joel DM, Kleifeld Y, Losner-Goshen D, Herzlinger G, Gressel J (1995) Transgenic crops against parasites. Nature 374:220–221

    Article  CAS  Google Scholar 

  • Kanampiu FK, Ransom JK, Gressel J (2001) Imazapyr seed dressings for Striga control on acetolactate synthase target-site resistant maize. Crop Protect 20:885–895

    Article  CAS  Google Scholar 

  • Kanampiu FK, Kabambe V, Massawe C, Jasi L, Friesen D, Ransom JK, Gressel J (2003) Multi-site, multi-season field tests demonstrate that herbicide seed-coating herbicide-resistance maize controls Striga spp. and increases yields in several African countries. Crop Protect 22:679–706

    Article  Google Scholar 

  • Kanampiu FK, Diallo A, Burnet M, Karaya H, Gressel J (2007) Success with the low-biotech of seed-coated imidazolinone resistant maize. In: Ejeta G, Gressel J (eds) Integrating new technologies for Striga control—towards ending the witch hunt. World Scientific, Singapore, pp 145–158

    Google Scholar 

  • Kanampiu F, Karaya H, Burnet M, Gressel J (2009) Needs for and effectiveness of slow release herbicide seed treatment Striga control formulations for protection against early season crop phytotoxicity. Crop Protect 28:845–853

    Article  CAS  Google Scholar 

  • Khan ZR, Midega CAO, Hassanali A, Pickett JA (2007) Field developments on Striga control by Desmodium intercrops in a “push-pull” strategy. In: Ejeta G, Gressel J (eds) Integrating new technologies for Striga control—towards ending the witch hunt. World Scientific, Singapore, pp 241–252

    Google Scholar 

  • Leah JM, Caseley JC, Riches CR, Valverde B (1994) Association between elevated activity of aryl acylamidase and propanil resistance in jungle-rice, Echinochloa colona. Pesticide Sci 42:281–289

    Article  CAS  Google Scholar 

  • Li J, Lis KE, Timko MP (2009) Molecular genetics of race-specific resistance of cowpea to Striga gesnerioides. Pest Mgmt Sci 65:520–527

    Article  CAS  Google Scholar 

  • Lin C, Fang J, Xu X, Zhao T, Cheng J, Tu J, Ye G, Shen Z (2008) A built-in strategy for containment of transgenic plants: creation of selectively terminable transgenic rice. PLoS ONE 3:e1818

    Article  PubMed  Google Scholar 

  • Madsen KH, Valverde BE, Jensen JE (2002) Risk assessment of herbicide-resistant crops: A Latin American perspective using rice (Oryza sativa) as a model. Weed Tech 16:215–223

    Article  Google Scholar 

  • Meir S, Amsellem Z, Al-Ahmad H, Safran E, Gressel J (2009) Transforming a Nep1 toxin gene into two Fusarium spp. to enhance mycoherbicide activity on Orobanche—failure and success. Pest Mgmt Sci 65:588–595

    Article  CAS  Google Scholar 

  • Messeguer J, Fogher C, Guiderdoni E, Marfa V, Catala MM, Baldi G, Mele E (2001) Field assessments of gene flow from transgenic to cultivated rice (Oryza sativa L.) using a herbicide resistance gene as tracer marker. Theor Appl Genet 103:1151–1159

    Article  CAS  Google Scholar 

  • Moss SR, Perryman SAM, Tatnell LV (2007) Managing herbicide-resistant blackgrass (Alopecurus myosuroides): theory and practice. Weed Tech 21:300–309

    Article  CAS  Google Scholar 

  • Mundy PJ (2000) Red-billed queleas in Zimbabwe. In: Cheke RA, Rosenberg LJ, Kieser ME (eds) Workshop on research priorities for migrant pests of agriculture in southern Africa. Natural Resources Institute, Chatham

    Google Scholar 

  • Naqvi S, Zhu CF, Farre G, Ramessar K, Bassie L, Breitenbach J, Conesa DP, Ros G, Sandmann G, Capell T, Christou P (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci USA 106:7762–7767

    Article  CAS  PubMed  Google Scholar 

  • Olofsdotter M, Valverde BE, Madsen KH (2000) Herbicide resistant rice (Oryza sativa L.): global implications for weedy rice and weed management. Ann Appl Biol 137:279–295

    Article  CAS  Google Scholar 

  • Oswald A (2005) Striga control—technologies and their dissemination. Crop Protect 24:333–342

    Article  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotech 23:482–487

    Article  CAS  Google Scholar 

  • Parker C (2009) Observations on the current status of Orobanche and Striga problems worldwide. Pest Mgmt Sci 65:453–459

    Article  CAS  Google Scholar 

  • Powles SB, Shaner DL (eds) (2001) Herbicide Resistance and World Grains. CRC, Boca-Raton

    Google Scholar 

  • Preston C, Boutsalis P, Malone J, Dolman F, Storrie A (2008) Resistance to glyphosate in Echinochloa colona in Australia. V International Weed Science Congress, Vancouver, pp 226–227

    Google Scholar 

  • Ransom JK, Babiker AG, Odhiambo GD (2007) Integrating crop management practices for Striga control. In: Ejeta G, Gressel J (eds) Integrating new technologies for Striga control—towards ending the witch hunt. World Scientific, Singapore, pp 213–228

    Google Scholar 

  • Rao AN, Johnson DE, Sivaprasad B, Ladha JK, Mortimer AM (2007) Weed management in direct-seeded rice. Adv Agron 93:153–255

    Article  CAS  Google Scholar 

  • Rector BG (2009) A sterile-female technique proposed for Striga hermonthica and other intractable weeds: advantages, shortcomings and risk management. Pest Mgmt Sci 65:596–602

    Article  CAS  Google Scholar 

  • Rich PJ, Ejeta G (2008) Towards effective resistance to Striga in African maize. Plant Signal Behav. 3:618–621

    PubMed  Google Scholar 

  • Riches CR, Knights JS, Chaves L, Caseley JC, Valverde BE (1997) The role of pendimethalin in the integrated management of propanil-resistant Echinochloa colona in Central America. Pesticide Sci 51:341–346

    Article  CAS  Google Scholar 

  • Smith MC, Holt JS, Webb M (1993) Population model of the parasitic weed Striga hermonthica (Scrophulariaceae) to investigate the potential of Smicronyx umbrinus (Coleoptera: Curculionidae) for biological control in Mali. Crop Protect 12:473–476

    Google Scholar 

  • Still CC, Kuzirian O (1967) Enzyme detoxication of 3′, 4′-dichloropropionanilide in rice and barnyard grass a factor in herbicide selectivity. Nature 216:799–800

    Article  CAS  PubMed  Google Scholar 

  • Swarbick PJ, Scholes JD, Press MC, Slate J (2009) A major QTL for resistance of rice to the parasitic plant Striga hermonthica is not dependent on genetic background. Pest Mgmt Sci 65:528–532

    Article  Google Scholar 

  • Talbert RE, Burgos NR (2007) History and management of herbicide-resistant barnyardgrass (Echinochloa crus-galli) in Arkansas rice. Weed Tech 21:324–331

    Article  CAS  Google Scholar 

  • Timko MP, Li J (2009) Gene-for-gene resistance in Striga-cowpea associations. Science 325:1094 + supplementary information online

    Article  PubMed  Google Scholar 

  • Traoré D, Vincent C, Stewart RK (1995) Life history of Smicronyx guineanus and Sm. umbrinus (Col.: Curculionidae) on Striga hermonthica (Scrophulariaceae). Biocontrol Sci Tech 40:211–221

    Google Scholar 

  • Tuinstra M, Al-Khatib K (2008) Acetolactate synthase herbicide resistant sorghum. US Patent Application 20080216187.

  • Tuinstra MR, Soumana S, Al-Khatib K, Kapran I, Toure A, van Ast A, Bastiaans L, Ochanda NW, Salami I, Kayentao M, Dembele S (2009) Efficacy of herbicide seed treatments for controlling Striga infestation of sorghum. Crop Sci 49:923–929

    Article  CAS  Google Scholar 

  • Valverde BE (2005) The damage by weedy rice—can feral rice remain undetected? In: Gressel J (ed) Crop Ferality and Volunteerism. CRC, Boca Raton, pp 279–294

    Google Scholar 

  • Valverde BE (2007) Status and management of grass-weed herbicide resistance in Latin America. Weed Tech 21:310–323

    Article  CAS  Google Scholar 

  • Valverde BE, Gressel J (2005) Implications and containment of gene flow from herbicide-resistant rice (Oryza sativa). Proc. Asian Pacific Weed Science Society, Agricultural Publishing House, Ho-Chi Minh City, pp 63–84.

  • Valverde BE, Itoh K (2001) Herbicide resistance and its management in world rice ecosystems. In: Powles SB, Shaner DL (eds) Herbicide Resistance and World Grains. CRC, Boca Raton, pp 195–249

    Google Scholar 

  • Valverde BE, Riches CR, Caseley JC (2000) Prevention and Management of Herbicide Resistant Weeds in Rice. Cámara de Insumos Agropecuarios, San José, pp 1–123. available online at: http://www.weedscience.org/Bernal/RiceRW.htm

  • Valverde BE, Chaves L, Garita I, Ramirez F, Vargas E, Carmiol J, Riches CR, Caseley JC (2001) Modified herbicide regimes for propanil-resistant junglerice control in rain-fed rice. Weed Sci 49:395–405

    Article  CAS  Google Scholar 

  • Venne J, Beed F, Avocanh A, Watson A (2009) Integrating Fusarium oxysorum f. sp. strigae into cereal cropping systems in Africa. Pest Mgmt Sci 65:572–580

    Article  CAS  Google Scholar 

  • Vidotto F, Ferrero A (2005) Modeling population dynamics to overcome feral rice in rice. In: Gressel J (ed) Crop Ferality and Volunteerism. CRC, Boca Raton, pp 355–370

    Google Scholar 

  • Walsh MJ, Powles SB (2007) Management strategies for herbicide-resistant weed populations in Australian dryland crop production systems. Weed Tech 21:332–338

    Article  CAS  Google Scholar 

  • Westwood JH, Roney JK, Khatibi PA, Stromberg VK (2009) RNA translocation between parasitic plants and their hosts. Pest Mgmt Sci 65:533–539

    Article  CAS  Google Scholar 

  • Yang YK, Kim SO, Chung HS, Lee YH (2000) Use of Colletotrichum graminicola KA001 to control barnyard grass. Plant Dis 84:55–59

    Article  Google Scholar 

  • Yasuor H, Osuna MD, Ortiz A, Saldain NE, Eckert JW, Fischer AJ (2009) Mechanism of Resistance to Penoxsulam in Late Watergrass [Echinochloa phyllopogon (Stapf) Koss.]. J Agric Food Chem 57:3653–3660

    Article  CAS  PubMed  Google Scholar 

  • Yih RY, McRae DH, Wilson HF (1968) Mechanism of selective action of 3', 4'-dichloropropionanilide. Plant Physiol 43:1291–1296

    Article  CAS  PubMed  Google Scholar 

  • Yoder JI, Gunathilake P, Wu B, Tomilova N, Tomilo AA (2009) Engineering host resistance against parasitic weeds with RNA interference. Pest Mgmt Sci 65:460–466

    Article  CAS  Google Scholar 

  • Yoshida S, Shirasu K (2009) Multiple layers of incompatibility to the parasitic witchweed, Striga hermonthica. New Phytol 183:180–189

    Article  PubMed  Google Scholar 

  • Yun MS, Yogo Y, Miura R, Yamasue Y, Fischer AJ (2005) Cytochrome P-450 monooxygenase activity in herbicide-resistant and -susceptible late watergrass (Echinochloa phyllopogon). Pestic Biochem Physiol 83:107–114

    Article  CAS  Google Scholar 

  • Zhang WM, Watson AK (1997a) Efficacy of Exserohilum monoceras for the control of Echinochloa species in rice (Oryza sativa). Weed Sci 45:144–150

    CAS  Google Scholar 

  • Zhang WM, Watson AK (1997b) Host range of Exserohilum monoceras, a potential bioherbicide for the control of Echinochloa species. Can J Bot 75:685–692

    Article  Google Scholar 

  • Zhang L, Lu Q, Chen HG, Pan G, Xiao SS, Dai Y, Li Q, Zhang JW, Wu XZ, Wu JS, Tu JM, Liu KD (2007) Identification of a cytochrome P450 hydroxylase, CYP81A6, as the candidate for the bentazon and sulfonylurea herbicide resistance gene, Bel, in rice. Molec Breeding 19:59–68

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Gressel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gressel, J., Valverde, B.E. The other, ignored HIV — highly invasive vegetation. Food Sec. 1, 463–478 (2009). https://doi.org/10.1007/s12571-009-0038-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-009-0038-7

Keywords

Navigation