Skip to main content
Log in

Cardiac resynchronization therapy and the role of nuclear cardiology

  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Cardiac resynchronization therapy (CRT) is an accepted treatment modality in patients with endstage heart failure despite optimal pharmacologic therapy. Although considerable benefit of CRT has been demonstrated in large clinical trials, a substantial cohort of patients failed to respond to CRT. Accordingly, studies have focused on potential predictors for CRT response, and the relative merits of left ventricular dyssynchrony, viability, and scar tissue for CRT response have been demonstrated. Nuclear cardiology techniques can provide this information, particularly gated myocardial perfusion single photon emission CT with phase analysis, and this technique can be used to improve selection of CRT candidates. Also, nuclear imaging can be used to evaluate effects of CRT (changes in blood flow, oxidative metabolism, glucose utilization, and sympathetic innervation). The use of nuclear imaging in selection of CRT patients, and evaluation of CRT effects, are reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Rosamond W, Flegal K, Furie K, et al.: Heart disease and stroke statistics—2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2008, 117:25–146.

    Google Scholar 

  2. Dickstein K, Cohen-Solal A, Filippatos G, et al.: ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J 2008, 29:2388–2442.

    Article  PubMed  CAS  Google Scholar 

  3. Lozano I, Bocchiardo M, Achtelik M, et al.: Impact of biventricular pacing on mortality in a randomized crossover study of patients with heart failure and ventricular arrhythmias. Pacing Clin Electrophysiol 2000, 23:1711–1712.

    PubMed  CAS  Google Scholar 

  4. Cazeau S, Leclercq C, Lavergne T, et al.: Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med 2001, 344:873–880.

    Article  PubMed  CAS  Google Scholar 

  5. Abraham WT, Fisher WG, Smith AL, et al.: Cardiac resynchronization in chronic heart failure. N Engl J Med 2002, 346:1845–1853.

    Article  PubMed  Google Scholar 

  6. Auricchio A, Stellbrink C, Sack S, et al.: Long-term clinical effect of hemodynamically optimized cardiac resynchronization therapy in patients with heart failure and ventricular conduction delay. J Am Coll Cardiol 2002, 39:2026–2033.

    Article  PubMed  Google Scholar 

  7. Young JB, Abraham WT, Smith AL, et al.: Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: the MIRACLE ICD Trial. JAMA 2003, 289:2685–2694.

    Article  PubMed  Google Scholar 

  8. Auricchio A, Stellbrink C, Butter C, et al.: Clinical efficacy of cardiac resynchronization therapy using left ventricular pacing in heart failure patients stratified by severity of ventricular conduction delay. J Am Coll Cardiol 2003, 42:2109–2116.

    Article  PubMed  Google Scholar 

  9. Bristow MR, Saxon LA, Boehmer J, et al.: Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 2004, 350:2140–2150.

    Article  PubMed  CAS  Google Scholar 

  10. Cleland JG, Daubert JC, Erdmann E, et al.: The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 2005, 352:1539–1549.

    Article  PubMed  CAS  Google Scholar 

  11. Epstein AE, DiMarco JP, Ellenbogen KA, et al.: ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices): developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. Circulation 2008, 117:350–408.

    Article  Google Scholar 

  12. Bax JJ, Van der Wall EE, Schalij MJ: Cardiac resynchronization therapy for heart failure. N Engl J Med 2002, 347:1803–1804.

    Article  PubMed  Google Scholar 

  13. Yu CM, Fung JW, Zhang Q, et al.: Tissue Doppler imaging is superior to strain rate imaging and postsystolic shortening on the prediction of reverse remodeling in both ischemic and nonischemic heart failure after cardiac resynchronization therapy. Circulation 2004, 110:66–73.

    Article  PubMed  Google Scholar 

  14. Bax JJ, Bleeker GB, Marwick TH, et al.: Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol 2004, 44:1834–1840.

    Article  PubMed  Google Scholar 

  15. Bleeker GB, Holman ER, Steendijk P, et al.: Cardiac resynchronization therapy in patients with a narrow QRS complex. J Am Coll Cardiol 2006, 48:2243–2250.

    Article  PubMed  Google Scholar 

  16. Chung ES, Leon AR, Tavazzi L, et al.: Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation 2008, 117:2608–2616.

    Article  PubMed  Google Scholar 

  17. Bleeker GB, Kaandorp TA, Lamb HJ, et al.: Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation 2006, 113:969–976.

    Article  PubMed  Google Scholar 

  18. Adelstein EC, Saba S: Scar burden by myocardial perfusion imaging predicts echocardiographic response to cardiac resynchronization therapy in ischemic cardiomyopathy. Am Heart J 2007, 153:105–112.

    Article  PubMed  Google Scholar 

  19. Ypenburg C, Schalij MJ, Bleeker GB, et al.: Impact of viability and scar tissue on response to cardiac resynchronization therapy in ischaemic heart failure patients. Eur Heart J 2007, 28:33–41.

    Article  PubMed  Google Scholar 

  20. Ypenburg C, Schalij MJ, Bleeker GB, et al.: Extent of viability to predict response to cardiac resynchronization therapy in ischemic heart failure patients. J Nucl Med 2006, 47:1565–1570.

    PubMed  Google Scholar 

  21. Helm RH, Byrne M, Helm PA, et al.: Three-dimensional mapping of optimal left ventricular pacing site for cardiac resynchronization. Circulation 2007, 115:953–961.

    Article  PubMed  Google Scholar 

  22. Bilchick KC, Dimaano V, Wu KC, et al.: Cardiac magnetic resonance assessment of dyssynchrony and myocardial scar predicts functional class improvement following cardiac resynchronization therapy. J Am Coll Cardiol Imaging 2008, 1:561–568.

    Google Scholar 

  23. Ypenburg C, van Bommel RJ, Delgado V, et al.: Optimal left ventricular lead position predicts reverse remodeling and survival after cardiac resynchronization therapy. J Am Coll Cardiol 2008, 52:1402–1409.

    Article  PubMed  Google Scholar 

  24. Van de Veire NR, Schuijf JD, De Sutter J, et al.: Non-invasive visualization of the cardiac venous system in coronary artery disease patients using 64-slice computed tomography. J Am Coll Cardiol 2006, 48:1832–1838.

    Article  PubMed  Google Scholar 

  25. Van de Veire NR, Schuijf JD, Bleeker GB, et al.: Magnetic resonance imaging and computed tomography in assessing cardiac veins and scar tissue. Europace 2008, 10:110–113.

    Google Scholar 

  26. Van de Veire NR, Marsan NA, Schuijf JD, et al.: Noninvasive imaging of cardiac venous anatomy with 64-slice multi-slice computed tomography and noninvasive assessment of left ventricular dyssynchrony by 3-dimensional tissue synchronization imaging in patients with heart failure scheduled for cardiac resynchronization therapy. Am J Cardiol 2008, 101:1023–1029.

    Article  PubMed  Google Scholar 

  27. Fauchier L, Marie O, Casset-Senon D, et al.: Interventricular and intraventricular dyssynchrony in idiopathic dilated cardiomyopathy: a prognostic study with Fourier phase analysis of radionuclide angioscintigraphy. J Am Coll Cardiol 2002, 40:2022–2030.

    Article  PubMed  Google Scholar 

  28. Toussaint JF, Lavergne T, Kerrou K, et al.: Basal asynchrony and resynchronization with biventricular pacing predict long-term improvement of LV function in heart failure patients. Pacing Clin Electrophysiol 2003, 26:1815–1823.

    Article  PubMed  Google Scholar 

  29. Botvinick EH, O’Connell JW, Kadkade PP, et al.: Potential added value of three-dimensional reconstruction and display of single photon emission computed tomographic gated blood pool images. J Nucl Cardiol 1998, 5:245–255.

    Article  PubMed  CAS  Google Scholar 

  30. Harel F, Finnerty V, Gregoire J, et al.: Comparison of left ventricular contraction homogeneity index using SPECT gated blood pool imaging and planar phase analysis. J Nucl Cardiol 2008, 15:80–85.

    Article  PubMed  Google Scholar 

  31. Chen J, Garcia EV, Folks RD, et al.: Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol 2005, 12:687–695.

    Article  PubMed  Google Scholar 

  32. Garcia EV, Faber TL, Cooke CD, et al.: The increasing role of quantification in clinical nuclear cardiology: the Emory approach. J Nucl Cardiol 2007, 14:420–432.

    Article  PubMed  Google Scholar 

  33. Hoffman EJ, Huang SC, Phelps ME: Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 1979, 3:299–308.

    Article  PubMed  CAS  Google Scholar 

  34. Galt JR, Garcia EV, Robbins WL: Effects of myocardial wall thickness on SPECT quantification. IEEE Trans Med Imaging 1999, 9:144–150.

    Article  Google Scholar 

  35. Chen J, Faber TL, Cooke CD, Garcia EV: Temporal resolution of multiharmonic phase analysis of ECG-gated myocardial perfusion SPECT studies. J Nucl Cardiol 2008, 15:383–391.

    Article  PubMed  Google Scholar 

  36. Trimble MA, Velazquez EJ, Adams GL, et al.: Repeatability and reproducibility of phase analysis of gated single-photon emission computed tomography myocardial perfusion imaging used to quantify cardiac dyssynchrony. Nucl Med Commun 2008, 29:374–381.

    Article  PubMed  Google Scholar 

  37. Trimble MA, Borges-Neto S, Smallheiser S, et al.: Evaluation of left ventricular mechanical dyssynchrony as determined by phase analysis of ECG-gated SPECT myocardial perfusion imaging in patients with left ventricular dysfunction and conduction disturbances. J Nucl Cardiol 2007, 14:298–307.

    Article  PubMed  Google Scholar 

  38. Henneman MM, Chen J, Ypenburg C, et al.: Phase analysis of gated myocardial perfusion single-photon emission computed tomography compared with tissue Doppler imaging for the assessment of left ventricular dyssynchrony. J Am Coll Cardiol 2007, 49:1708–1714.

    Article  PubMed  Google Scholar 

  39. Ajmone MN, Henneman MM, Chen J, et al.: Left ventricular dyssynchrony assessed by two three-dimensional imaging modalities: phase analysis of gated myocardial perfusion SPECT and tri-plane tissue Doppler imaging. Eur J Nucl Med Mol Imaging 2008, 35:166–173.

    Article  Google Scholar 

  40. Marsan NA, Henneman MM, Chen J, et al.: Real-time 3-dimensional echocardiography as a novel approach to quantify left ventricular dyssynchrony: a comparison study with phase analysis of gated myocardial perfusion single photon emission computed tomography. J Am Soc Echocardiogr 2008, 21:801–807.

    Article  PubMed  Google Scholar 

  41. Henneman MM, Chen J, Dibbets-Schneider P, et al.: Can LV dyssynchrony as assessed with phase analysis on gated myocardial perfusion SPECT predict response to CRT? J Nucl Med 2007, 48:1104–1111.

    Article  PubMed  Google Scholar 

  42. Bleeker GB, Mollema SA, Holman ER, et al.: Left ventricular resynchronization is mandatory for response to cardiac resynchronization therapy: analysis in patients with echocardiographic evidence of left ventricular dyssynchrony at baseline. Circulation 2007, 116:1440–1448.

    Article  PubMed  Google Scholar 

  43. Knaapen P, van Campen LM, de Cock CC, et al.: Effects of cardiac resynchronization therapy on myocardial perfusion reserve. Circulation 2004, 110:646–651.

    Article  PubMed  Google Scholar 

  44. Lindner O, Vogt J, Kammeier A, et al.: Effect of cardiac resynchronization therapy on global and regional oxygen consumption and myocardial blood flow in patients with non-ischaemic and ischaemic cardiomyopathy. Eur Heart J 2005, 26:70–76.

    Article  PubMed  Google Scholar 

  45. Ukkonen H, Beanlands RS, Burwash IG, et al.: Effect of cardiac resynchronization on myocardial efficiency and regional oxidative metabolism. Circulation 2003, 107:28–31.

    Article  PubMed  CAS  Google Scholar 

  46. Nowak B, Sinha AM, Schaefer WM, et al.: Cardiac resynchronization therapy homogenizes myocardial glucose metabolism and perfusion in dilated cardiomyopathy and left bundle branch block. J Am Coll Cardiol 2003, 41:1523–1528.

    Article  PubMed  Google Scholar 

  47. Neri G, Zanco P, Zanon F, Buchberger R: Effect of biventricular pacing on metabolism and perfusion in patients affected by dilated cardiomyopathy and left bundle branch block: evaluation by positron emission tomography. Europace 2003, 5:111–115.

    Article  PubMed  CAS  Google Scholar 

  48. Hartmann F, Ziegler S, Nekolla S, et al.: Regional patterns of myocardial sympathetic denervation in dilated cardiomyopathy: an analysis using carbon-11 hydroxyephedrine and positron emission tomography. Heart 1999, 81:262–270.

    PubMed  CAS  Google Scholar 

  49. Pietila M, Malminiemi K, Ukkonen H, et al.: Reduced myocardial carbon-11 hydroxyephedrine retention is associated with poor prognosis in chronic heart failure. Eur J Nucl Med 2001, 28:373–376.

    Article  PubMed  CAS  Google Scholar 

  50. Nishioka SA, Martinelli FM, Brandao SC, et al.: Cardiac sympathetic activity pre and post resynchronization therapy evaluated by 123I-MIBG myocardial scintigraphy. J Nucl Cardiol 2007, 14:852–859.

    Article  PubMed  Google Scholar 

  51. Burri H, Sunthorn H, Somsen A, et al.: Improvement in cardiac sympathetic nerve activity in responders to resynchronization therapy. Europace 2008, 10:374–378.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen J. Bax.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boogers, M.M., Chen, J. & Bax, J.J. Cardiac resynchronization therapy and the role of nuclear cardiology. curr cardiovasc imaging rep 2, 197–204 (2009). https://doi.org/10.1007/s12410-009-0024-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-009-0024-7

Keywords

Navigation