Skip to main content
Log in

Inhibition of DNA topoisomerases I and II and cytotoxicity of compounds from Ulmus davidiana var. japonica

  • Research Articles
  • Drug Discovery and Development
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Twenty five compounds including ten triterpenes (1–3, 5–11), six flavonoids (12–15, 24, 25), five lignans (17, 18, 21–23), two butenyl clohexnone glycosides (19–20), one fructofuranoside (16) and one fatty acid (4) were isolated from the roots of Ulmus davidiana var. japonica. The structures of those compounds were identified by comparing their physicochemical and spectral data with those of published in literatures. All the compounds were evaluated for DNA topoisomerase inhibitory activities and cytotoxicities. Among the purified compounds, 4 and 19 showed more potent inhibitory acitivities (IC50: 39 and 19 μM, respectively) than camptothecin, as the positive control (IC50: 46 μM) against topoisomerase I. Compounds, 4, 10, 12, 19, 24 and 25 showed strong inhibitory activities toward DNA topoisomerase II (IC50: 0.1, 0.52, 0.47, 0.42, 0.17 μM and 17 nM, respectively), which were more potent than that of etoposide as positive control (IC50: 20 μM). In A549 cell line, 5 and 6 showed cytotoxicities (IC50: 4 μM and 3 μM, respectively, with IC50 of camptothecin as positive control: 10.3 μM). In the HepG2 cell line, 3, 5 and 7 showed cytotoxicity (IC50: 4, 3 and 4 μM, respectively, with IC50 of camptothecin: 0.3 μM). Compounds 6, 12 and 23 showed cytotoxicities in the HT-29 cell line (IC50: 19, 19 and 15 μM, respectively, with IC50 of camptothecin: 2 μM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achenbach, H., Waibel, R., Raffelsberger, B., and Ivan, A. M., Iridoid and other constituents of Canthium subcordatum. Phytochemistry, 20, 1591–1595 (1981).

    Article  CAS  Google Scholar 

  • Aguirre, M. C., Delporte, C., Backhouse, N., Erazo, S., Letelier, M. E., Cassels, B. K., Silva, X., Alegria, S., and Negrete, R., Topical anti-inflammatory activity of 2alpha-hydroxy pentacyclic triterpene acids from the leaves of Ugni molinae. Bioorg. Med. Chem., 14, 5673–5677 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Ali, M. S., Mahmud, S., Perveen, S., Ahmad, V. U., and Rizwani, G. H., Epimers from the leaves of Calophyllum inophyllum. Phytochemistry, 50, 1385–1389 (1999).

    Article  CAS  Google Scholar 

  • Chang, C. W., Wu, T. S., Hsieh, Y. S., Kuo, S. C., and Chao, P. D., Terpenoids of Syzygium formosanum. J. Nat. Prod., 62, 327–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Chen, A. Y. and Liu, L. F., DNA topoisomerase: essential enzymes and lethal targets. Annu. Rev. Pharmacol. Toxicol., 34, 191–218 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Chung, I. M., Khanh, T. D., Lee, O. K., and Ahmad, A., Chemical constituents from ajwain seeds (Trachyspermum ammi) and inhibitory acitivity of thymol, lupeol and fatty acids on barnyard grass and radish seeds. Chem. Asian J., 19, 1524–1534 (2007).

    CAS  Google Scholar 

  • D’Arpa, P. and Liu, L. F., Topoisomerase-targeting antitumor drugs. Biochim. Biophys. Acta, 989, 163–177 (1989).

    PubMed  Google Scholar 

  • De Marino, S., Borbone, N., Zollo, F., Ianaro, A., Di Meglio, P., and Iorizzi, M., Megastigmane and phenolic components from Laurus nobilis L. leaves and their inhibitory effects on nitric oxide production. J. Agric. Food Chem., 52, 7525–7531 (2004).

    Article  PubMed  Google Scholar 

  • Foo, L. Y. and Karchesy, J. J., Polyphenolic glycosides from Douglas fir inner bark. Phytochemistry, 28, 1237–1240 (1989).

    Article  CAS  Google Scholar 

  • Fukuda, M., Nishio, K., Kanzawa, F., Ogasawara, H., Ishida, T., Arioka, H., Bojamowski, K., Oka, M., and Saijo, N., Synergism between cisplatin and topoisomerase I inhibitors, NB-506 and SN-38, in human small cell lung cancer cells. Cancer Res., 56, 789–793 (1996).

    CAS  PubMed  Google Scholar 

  • Hisashi, K. and Haruo, O., Configurational studies on hydroxy groups at C-2, 3 and 23 or 24 of oleanene and ursene-type triterpenes by NMR spectroscopy. Phytochemistry, 28, 1703–1710 (1989).

    Article  Google Scholar 

  • Inoshiri, S., Sasaki, M., Kohda, H., Otsuka, H., and Yamasaki, K., Aromatic glycosides from Berchemia racemosa. Phytochemistry, 26, 2811–2814 (1987).

    Article  CAS  Google Scholar 

  • Ishimaru, K., Nonaka, G. I., and Nishioka, I., Flavan-3-ol and procyanidin glycosides from Quercus miyagii. Phytochemistry, 26, 1167–1170 (1987).

    Article  CAS  Google Scholar 

  • Jin, U. H., Lee, D. Y., Kim, D. S., Lee, I. S., and Kim, C. H., Induction of mitochondria-mediated apoptosis by methanol fraction of Ulmus davidiana Planch (Ulmaceae) in U87 glioblastoma cells. Environ. Toxicol. Pharmacol., 22, 136–141 (2006).

    Article  CAS  Google Scholar 

  • Jin, U. H., Suh, S. J., Park, S. D., Kim, K. S., Kwon, D. Y., and Kim, C. H., Inhibition of mouse osteoblast proliferation and prostaglandin E2 synthesis by Ulmus davidiana Planch (Ulmaceae). Food Chem. Toxicol., 46, 2135–2142 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Jun, C. D., Pae, H. O., Kim, Y. C., Jeong, S. J., Yoo, J. C., Lee, E. J., Choi, B. M., Chae, S. W., Park, R. K., and Chung, H. T., Inhibition of nitric oxide synthesis by butanol fraction of the methanol extract of Ulmus davidiana in murine macrophages. J. Ethnopharmacol., 62, 129–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Kang, S. K., Kim, K. S., Byun, Y. S., Suh, S. J., Jin, U. H., Kim, K. H., Lee, I. S., and Kim, C. H., Effects of Ulmus davidiana Planch on mineralization, bone morphogenetic protein-2, alkaline phosphatase type I collagen, and collagenase-1 in bone cells. In Vitro Cell. Dev. Biol. Anim., 42, 225–229 (2006).

    Article  PubMed  Google Scholar 

  • Kohler, N., Wray, V., and Winterhalter, P., Preparative isolation of procyanidins from grap seed extracts by highspeed counter-current chromatography. J. Chromatogr. A, 1177, 114–125 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Lavaud, C., Massiot, G., Barrera, J. B., Moretti, C., and Le Men-Olivier, L., Triterpene saponins from Myrsine pellucida. Phytochemistry, 37, 1671–1677 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. H., Lee, J. H., Cho, C. H., Noh, M. J., and Kim, Y. B., Radiosensitizing and topoisomerase I inhibitory effects of Aloe vera, Formitella fraxinea, and Ulmus davidiana extracts. Nat. Prod. Sci., 7, 60–62 (2001a).

    CAS  Google Scholar 

  • Lee, M. K., Sung, S. H., Lee, H. S., Cho, J. H., and Kim, Y. C., Lignan and neolignan glycosides from Ulmus davidiana var. japonica. Arch. Pharm. Res., 24, 198–201 (2001b).

    Article  CAS  PubMed  Google Scholar 

  • Li, S., Chen, R. Y., and Yu, D. Q., Study on chemical constituents of Myricaria paniculata I. Zhongguo Zhong Yao Za Zhi, 32, 403–406 (2007).

    CAS  PubMed  Google Scholar 

  • Liu, L. F., DNA topoisomerase poisons as antitumor drugs. Annu. Rev. Biochem., 58, 351–375 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Liu, P., Duan, H. Q., Pan, Q., Zhang, Y. W., and Yao, Z., Triterpenes from herb of Potentilla chinesis. Zhongguo Zhong Yao Za Zhi, 31, 1875–1879 (2006).

    CAS  PubMed  Google Scholar 

  • Lundgren, L. N., Popoff, T., and Theander, O., Dilignol glycosides from needels of Picea abies. Phytochemistry, 20, 1967–1969 (1981).

    Article  CAS  Google Scholar 

  • Moon, Y. H. and Rim, G. R., Studies on the constituents of Ulmus parvifolia. Korean J. Pharmaco., 26, 1–7 (1995).

    CAS  Google Scholar 

  • Na, M. K., An, R. B., Lee, S. M., Min, B. S., Kim, Y. H., Bae, K. H., and Kang, S. S., Antioxidant compounds from the stem bark of Sorbus commixta. Nat. Prod. Sci., 8, 26–29 (2002).

    CAS  Google Scholar 

  • Nahrstedt, A., Proksch, P., and Conn, E. E., (-)-Catechin, flavonol glycosides and flavones from Chamaebatia foliolosa. Phytochemistry, 26, 1546–1547 (1987).

    Article  CAS  Google Scholar 

  • Pabst, A., Barron, D., Semon, E., and Schreier, P., Two diastereomeric 3-oxo-α-ionol-β-glucosides from raspberry fruit. Phytochemistry, 31, 1649–1652 (1992).

    Article  CAS  Google Scholar 

  • Pommier, Y., DNA topoisomerase I and II in cancer chemotherapy: update and perspectives. Cancer Chemother. Pharmacol., 32, 103–108 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Potmesil, M., Camptothecins: from bench research to hospital wards. Cancer Res., 54, 1431–1439 (1994).

    CAS  PubMed  Google Scholar 

  • Rubinstein, L. V., Shoemaker, R. H., Paul, K. D., Simon, R. M., Tosini, S., Skehan, P., Scudiero, D. A., Monks, A., and Boyd, M. R., Comparison of in vitro anticancer-drug-screening data generated with a lines. J. Nat. Cancer Inst., 82, 1113–1118 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Sang, S., Kikuzaki, H., Lapsley, K., Rosen, R. T., Nakatani, N., and Ho, C. T., Sphingolipid and other constituents from almond nuts (Prunus amygdalus Batsch). J. Agric. Food Chem., 50, 4709–4712 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Seebacher, W., Simic, N., Weis, R., Saf, R., and Kunert, O., Complete assignments of 1H and 13C NMR resonances of oleanolic acid, 18-oleanolic acid, ursolic acid and their 11-oxo derivatives. Magn. Reson. Chem., 41, 636–638 (2003).

    Article  CAS  Google Scholar 

  • Siddiqui, A. A., Wani, S. M., Rajesh, R., and Alagarsamy, V., Phytochemical and pharmacological investigation of Hibiscus rosasinensis Linn. Indian J. Pharm. Sci., 68, 588–593 (2006).

    Article  CAS  Google Scholar 

  • Slichenmyer, W. J., Rowinsky, E. K., Donehower, R. C., and Kaufmann, S. H., The current status of camptothecin analogues as antitumor agents. J. Natl. Cancer Inst., 85, 271–291 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Smite, E., Pan, H., and Lundgren, L. N., Lignan glycosides from inner bark of Betula pendula. Phytochemistry, 40, 341–343 (1995).

    Article  CAS  Google Scholar 

  • Suh, S. J., Yun, W. S., Kim, K. S., Jin, U. H., Kim, J. K., Kim, M. S., Kwon, D. Y., and Kim, C. H., Stimulative effect of Ulmus davidiana Planch (Ulmaceae) on osteoblastic MC3T3-E1 cells. J. Ethnopharmacol., 109, 480–485 (2007).

    Article  PubMed  Google Scholar 

  • Suzuki, K., Shono, F., Kai, H., Uno, T., and Uyeda, M., Inhibition of topoisomerases by fatty acids. J.Enzym. Inhib., 15, 357–366 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Tarascou, I., Barathieu, K., Andr, Y., Pianet, I., Dufourc, E. J., and Fouquet. E., An improved synthesis of procyanidin dimers: regio- and stereocontrol of the interflavan bond. European J. Org. Chem., 23, 5367–5377 (2006).

    Article  Google Scholar 

  • Umlauf, D., Zapp, J., Becker, H., and Adam, K. P., Biosynthesis of the irregular monoterpene artemisia ketone, the sesquiterpene germacrene D and other isoprenoids in Tanacetum vulgare L. (Asteraceae). Phytochemistry, 65, 2463–2470 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Wang, D., Xia, M., and Cui, Z., New triterpenoids isolated from the root bark of Ulmus pumila L. Chem. Pharm. Bull., 54, 775–778 (2006).

    Article  PubMed  Google Scholar 

  • Wang, J. C., DNA topoisomerases. Annu. Rev. Biochem., 65, 635–692 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Xie, W. D., Gao, X., and Jia, Z. J., A new C-10 acetylene and a new triterpenoid from Conyza canadensis. Arch. Pharm. Res., 30, 547–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Yoo, S. W., Kim, J. S., Kang, S. S., Son, K. H., Chang, H. W., Kim, H. P., Bae, K., and Lee, C. O., Constituents of the fruits and leaves of Euodia daniellii. Arch. Pharm. Res., 25, 824–830 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Yoshinari, K., Sashida, Y., and Shimomura, H., Two new lignan xylosides from the barks of Prunus ssiori and Prunus padus. Chem. Pharm. Bull., 37, 3301–3303 (1989).

    CAS  Google Scholar 

  • Yumiko, K., Toshihiro, A., Ken, Y., Michio, T., and Toshitake, T., Structures of five hydroxylated sterols from the seeds of Trichosanthes kirilowii Maxim. Chem. Pharm. Bull., 43, 1813–1817 (1995).

    Google Scholar 

  • Zhang, C. Z., Xu, X. Z., and Li, C., Fructosides from Cynomorium songaricum. Phytochemistry, 41, 975–976 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Keun Son.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, M.S., Lee, YK., Li, Y. et al. Inhibition of DNA topoisomerases I and II and cytotoxicity of compounds from Ulmus davidiana var. japonica . Arch. Pharm. Res. 33, 1307–1315 (2010). https://doi.org/10.1007/s12272-010-0903-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-0903-0

Key words

Navigation