Skip to main content
Log in

Mechanical properties of flax-g-poly(methyl acrylate) reinforced phenolic composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In order to develop composites with better mechanical properties and environmental performance, it becomes necessary to increase the hydrophobicity of the natural fibers and to improve the interface between matrix and natural fibers. Graft copolymerization of natural fibers is one of the best methods to attain these improvements. Only few workers have reported the use of graft copolymers as reinforcing material in the preparation of composites. So in the present paper, we report the preparation of graft copolymers of flax fibers with methyl acrylate (MA) using Fenton’s reagent (FAS-H2O2) as redox system. Synthesized flax-g-poly(MA) was characterized with FTIR, TGA/DTA, scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. Composites were prepared using flax-g-poly(MA) as a reinforcement and phenolformaldehyde (PF) as the binding material. Mechanical properties of phenol-formaldehyde composites were compared and it has been found that composites reinforced with flax-g-poly(MA) showed improvement in mechanical properties. Composites reinforced with flax-g-poly(MA) showed better tensile strength (235 N) and compressive strength (814 N) in comparison to composites reinforced with original flax fiber which showed lesser tensile strength (162 N) and compressive strength (372 N). Composites reinforced with flax-g-poly(MA) shows the improved MOR, MOE, and SP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Paramasivam and A. P. J. Abdul Kalam, Fibre. Sci. Technol., 7, 85 (1974).

    Article  Google Scholar 

  2. G. S. Patterson, A. S. Hoffmann, and E. W. Merill, J. Appl. Polym. Sci., 4, 159 (1960).

    Article  Google Scholar 

  3. C. Sella, A. Chapiro, and A. Matsumoto, J. Polym. Sci., 57, 529 (1962).

    Article  CAS  Google Scholar 

  4. A. Chapiro, J. Polym. Sci., 23, 377 (1957).

    Article  CAS  Google Scholar 

  5. S. Ishikawa, J. Polym. Sci. Pol. Lett., 3, 959 (1965).

    Article  CAS  Google Scholar 

  6. Y. Liu, L. Yang, Z. Shi, and J. Li, Polym. Int., 53, 1561 (2004).

    Article  CAS  Google Scholar 

  7. L. Y. Mwaikambo and M. P. Ansell, Compos. Sci. Technol., 63, 1297 (2003).

    Article  CAS  Google Scholar 

  8. B. Schartel, U. Braun, U. Schwarz, and S. Reinemann, Polymer, 44, 6241 (2003).

    Article  CAS  Google Scholar 

  9. B. S. Kaith, A. S. Singha, D. K. Dwivedi, S. Kumar, D. Kumar, and A. Dhemeniya, Int. J. Plast. Tech., 7, 119 (2003).

    CAS  Google Scholar 

  10. D. K. Dwivedi, A. S. Singha, S. Kumar, and B. S. Kaith, Int. J. Plast. Tech., 8, 299 (2004).

    CAS  Google Scholar 

  11. A. S. Singha, S. Kumar, and B. S. Kaith, Int. J. Plast. Tech., 9, 427 (2005).

    CAS  Google Scholar 

  12. B. S. Kaith, A. S. Singha, and S. Kalia, Int. J. Plast. Tech., 10, 572 (2006).

    Google Scholar 

  13. B. S. Kaith, A. S. Singha, and S. Kalia, Autex Res. J., 7, 119 (2007).

    Google Scholar 

  14. G. Canche-Escamilla, J. I. Cauich-Cupul, E. Mendizábal, J. E. Puig, H. Vázquez-Torres, and P. J. Herrera-Franco, Compos.: Part A, 30, 349 (1999).

    Article  Google Scholar 

  15. N. Reddy and Y. Yang, Polymer, 46, 5494 (2005).

    Article  CAS  Google Scholar 

  16. A. M. Agrawal, R. V. Manek, W. M. Kolling, and S. H. Neau, AAPS Pharm. Sci. Tech., 4, 1 (2003).

    Article  Google Scholar 

  17. L. C. Segal, A. E. Martin, and C. M. Conrad, Text. Res. J., 29, 786 (1959).

    Article  CAS  Google Scholar 

  18. A. Bhattacharya and B. N. Misra, Prog. Polym. Sci., 29, 767 (2004).

    Article  CAS  Google Scholar 

  19. B. S. Kaith and S. Kalia, Polym. J., 39, 1319 (2007).

    Article  CAS  Google Scholar 

  20. B. S. Kaith and S. Kalia, Polym. Composite, 2008, In Press.

  21. B. S. Kaith, A. S. Singha, and S. Kumar, J. Polym. Mater., 20, 195 (2003).

    CAS  Google Scholar 

  22. B. S. Kaith, A. S. Singha, and S. Kumar, J. Polym. Mater., 22, 425 (2005).

    CAS  Google Scholar 

  23. B. S. Kaith and S. Kalia, Int. J. Polym. Analys. Charact., 12, 401 (2007).

    Article  CAS  Google Scholar 

  24. Y. Liu, R. Zhang, J. Zhang, W. Zhou, and S. Li, Iran. Polym. J., 15, 935 (2006).

    CAS  Google Scholar 

  25. F. W. Billmeyer, Jr., “Textbook of Polymer Sciences”, 3rd ed., p.347, Wiley, New York, 1984.

    Google Scholar 

  26. B. S. Kaith, A. S. Singha, A. Chauhan, and B. N. Misra, J. Polym. Mater., 23, 349 (2006).

    CAS  Google Scholar 

  27. B. S. Kaith and S. Kalia, e-Polymers, no. 002 (2008).

  28. B. S. Kaith and S. Kalia, Express Polymer Letters, 2, 93 (2008).

    Article  CAS  Google Scholar 

  29. B. S. Kaith, A. S. Singha, S. Kumar, and S. Kalia, Int. J. Polym. Mater., 57, 54 (2008).

    Article  CAS  Google Scholar 

  30. S. Kalia and B. S. Kaith, E-Journal of Chemistry, 5, 163 (2008).

    Google Scholar 

  31. S. Kalia and B. S. Kaith, E-Journal of Chemistry, 5, 177 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susheel Kalia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalia, S., Kaith, B.S., Sharma, S. et al. Mechanical properties of flax-g-poly(methyl acrylate) reinforced phenolic composites. Fibers Polym 9, 416–422 (2008). https://doi.org/10.1007/s12221-008-0067-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-008-0067-4

Keywords

Navigation