Skip to main content
Log in

Properties of alkali treated short flax fiber reinforced poly(lactic acid)/polycarbonate composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The main focus of this study is to investigate the properties of alkali treated flax fiber reinforced poly(lactic acid)/polycarbonate (PLA/PC) composites. Characterization of these composites was performed by conducting tensile strength, dynamic mechanical analysis (DMA), differential scanning calorimeter (DSC) and scanning electron microscope (SEM) analyses. Tensile strength results revealed that the highest mechanical performance was observed for 2 % sodium hydroxide (NaOH) treated flax fiber reinforced PLA/PC composites. DMA analysis also supported the results of the tensile tests. Tan delta (δ) curves were used for evaluating the fiber-matrix adhesion in flax fiber reinforced composites. The lowest peak magnitude and consequently the best fiber-matrix adhesion were also observed for 2 % NaOH treated flax fiber reinforced composites. DSC results showed that slight changes occurred in glass transition and melting temperature values. Moreover, crystallinity of PLA was affected by the flax fiber reinforcement. The maximum crystallinity value was observed in 2 % NaOH treated flax fiber reinforced composites. Furthermore, SEM analysis showed that 2 % NaOH treated flax fibers have better interfacial bonding with PLA/PC matrix among the flax fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Avella, G. Bogoeva-Gaceva, A. Bužarovska, M. E. Errico, G. Gentile, and A. Grozdanov, J. Appl. Polym. Sci., 108, 3542 (2008).

    Article  CAS  Google Scholar 

  2. B. K. Goriparthi, K. N. S. Suman, and M. R. Nalluri, Polym. Compos., 33, 237 (2012).

    Article  CAS  Google Scholar 

  3. M. U. Wahit, N. I. Akos, and W. A. Laftah, Polym. Compos., 33, 1045 (2012).

    Article  CAS  Google Scholar 

  4. R. A. Shanks, A. Hodzic, and D. Ridderhof, J. Appl. Polym. Sci., 99, 2305 (2006).

    Article  CAS  Google Scholar 

  5. K. Hashima, S. Nishitsuji, and T. Inoue, Polymer, 51, 3934 (2010).

    Article  CAS  Google Scholar 

  6. M. Sheth, R. A. Kumar, V. Davé, R. A. Gross, and S. P. Mccarthy, J. Appl. Polym. Sci., 66, 1495 (1997).

    Article  CAS  Google Scholar 

  7. Y. Hu, Y. S. Hu, V. Topolkaraev, A. Hiltner, and E. Baer, Polymer, 44, 5681 (2003).

    Article  CAS  Google Scholar 

  8. Y. Hu, M. Rogunova, V. Topolkaraev, A. Hiltner, and E. Baer, Polymer, 44, 5701 (2003).

    Article  CAS  Google Scholar 

  9. G. Biresaw and C. J. Carriere, J. Polym. Sci. Part B: Polym. Phys., 40, 2248 (2002).

    Article  CAS  Google Scholar 

  10. K. S. Anderson and M. A. Hillmyer, Polymer, 45, 8809 (2004).

    Article  CAS  Google Scholar 

  11. N. Reddy, D. Nama, and Y. Yang, Polym. Degrad. Stab., 93, 233 (2008).

    Article  CAS  Google Scholar 

  12. A. M. Gajria, V. Davé, R. A. Gross, and S. P. McCarthy, Polymer, 37, 437 (1996).

    Article  CAS  Google Scholar 

  13. J. B. Lee, Y. K. Lee, G. D. Choi, S. W. Na, T. S. Park, and W. N. Kim, Polym. Degrad. Stab., 96, 553 (2011).

    Article  CAS  Google Scholar 

  14. J. L. Eguiburu, J. J. Iruin, M. J. Fernandez-Berridi, and J. San Romàn, Polymer, 39, 6891 (1998).

    Article  CAS  Google Scholar 

  15. F. P. La Mantia, L. Botta, M. Morreale, and R. Scaffaro, Polym. Degrad. Stab., 97, 21 (2012).

    Google Scholar 

  16. T. Kanzawa and K. Tokumitsu, J. Appl. Polym. Sci., 121, 2908 (2011).

    Article  CAS  Google Scholar 

  17. Y. Chen, G. Zeng, P. Jiang, X. G. Li, and Y. G. Huang, Appl. Mech. Mater., 66, 1902 (2011).

    Article  Google Scholar 

  18. L. Yan, N. Chouw, and K. Jayaraman, Compos. Part BEng., 56, 296 (2014).

    Article  CAS  Google Scholar 

  19. B. K. Goriparthi, K. N. S. Suman, and N. M. Rao, Compos. Part A-Appl. S., 43, 1800 (2012).

    Article  CAS  Google Scholar 

  20. B. Bax and J. Müssig, Compos. Sci. Technol., 68, 1601 (2008).

    Article  CAS  Google Scholar 

  21. A. Širvaitiene, V. Jankauskaite, P. Bekampiene, and A. Kondratas, Fibre. Text. East. Eur., 21, 123 (2013).

    Google Scholar 

  22. K. Oksman, M. Skrifvars, and J.-F. Selin, Compos. Sci. Technol., 63, 1317 (2003).

    Article  CAS  Google Scholar 

  23. H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, Compos.: Part B-Eng., 42, 856 (2011).

    Article  Google Scholar 

  24. L. Yan, N. Chouw, and X. Yuan, J. Reinf. Plast. Comp., 31, 425 (2012).

    Article  CAS  Google Scholar 

  25. A. M. Harris and E. C. Lee, J. Appl. Polym. Sci., 128, 2136 (2013).

    CAS  Google Scholar 

  26. M. Aydin, H. Tozlu, S. Kemaloglu, A. Aytac, and G. Ozkoc, J. Polym. Environ., 19, 11 (2011).

    Article  CAS  Google Scholar 

  27. N. M. Barkoula, S. K. Garkhail, and T. Peijs, Ind. Crops Prod., 31, 34 (2010).

    Article  CAS  Google Scholar 

  28. H. J. Li and M. M. Sain, Polym.-Plast. Technol. Eng., 42, 853 (2003).

    Article  CAS  Google Scholar 

  29. L. Yan, J. Reinf. Plast. Comp., 31, 887 (2012).

    Article  CAS  Google Scholar 

  30. N. G. Karsli, A. Aytac, and V. Deniz, J. Reinf. Plast. Comp., 31, 1053 (2012).

    Article  CAS  Google Scholar 

  31. N. G. Karsli and A. Aytac, Compos. Part B-Eng., 51, 270 (2013).

    Article  CAS  Google Scholar 

  32. M. Ashida and T. Noguchi, J. Appl. Polym. Sci., 30, 1011 (1985).

    Article  CAS  Google Scholar 

  33. X. Ren, X. Q. Wang, G. Sui, W. H. Zhong, M. A. Fuqua, and C. A. Ulven, J. Appl. Polym. Sci., 107, 2837 (2008).

    Article  CAS  Google Scholar 

  34. S. J. Eichhorn, C. A. Baillie, N. Zafeiropoulos, L. Y. Mwaikambo, M. Ansell, A. Dufresne, K. M. Entwistle, P. J. Herrera-Franco, G. C. Escamilla, L. Groom, M. Hughes, C. Hill, T. G. Rials, and P. M. Wild, J. Mater. Sci., 36, 2107 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayse Aytac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karsli, N.G., Aytac, A. Properties of alkali treated short flax fiber reinforced poly(lactic acid)/polycarbonate composites. Fibers Polym 15, 2607–2612 (2014). https://doi.org/10.1007/s12221-014-2607-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-2607-4

Keywords

Navigation