Skip to main content
Log in

Analytical description of IMS-signals

  • Technical Report
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

Ion mobility spectrometry (IMS) is widely used to detect chemical warfare agents, illegal drugs or explosives. In such cases often the occurrence of single, well known analytes or rather small groups of analytes is considered. To retrieve analytes in rather complex matrices like human breath it becomes essential to describe all analytes, known and unknown. Therefore, a mathematical description of the peak shape of well known analytes–including their concentration profiles–and the shapes of unknown or overlapping peaks by a minimum number of parameters could significantly improve the recognition and quantification of signals in IMS-chromatograms. In the following, a function is presented which describes the theoretical surface of a peak on a given position and height. In addition, the peak-function method can be applied for decomposition of overlapping signals within IMS-chromatograms, which furthermore enables a direct determination of the volume of each peak for an accurate quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Rearden P, Harrington PB (2005) Rapid screening of precursor and degradation products of chemical warfare agents in soil by solid-phase microextraction ion mobility spectrometry (SPME-IMS). Analytica Chimica Acta 545:13–20

    Article  CAS  Google Scholar 

  2. Steiner WE, English WA, Hill HH (2005) Separation efficiency of a chemical warfare agent simulant in an atmospheric pressure ion mobility time-of-flight mass spectrometer (IM(tof) MS). Analytica Chimica Acta 532:37–45

    Article  CAS  Google Scholar 

  3. Kolakowski BM, D'Agostino PA, Chenier C, Mester Z (2007) Analysis of chemical warfare agents in food products by atmospheric pressure ionization-high field asymmetric waveform ion mobility spectrometry-mass spectrometry. Analytical Chemistry 79:8257–8265

    Article  CAS  Google Scholar 

  4. McHugh VM et al (2003) Using an array of ion mobility spectrometers for ground truth measurements in field tests involving releases of chemical warfare agent surrogates. International Journal for Ion Mobility Spectrometry 6:49–52

    CAS  Google Scholar 

  5. Sielemann S, Baumbach JI, Schmidt H (2002) IMS with non radioactive ionization sources suitable to detect chemical warfare agent simulation substances. International Journal for Ion Mobility Spectrometry 5:143–148

    CAS  Google Scholar 

  6. Asbury GR, Wu C, Siems WF, Hill HH (2000) Separation and identification of some chemical warfare degradation products using electrospray high resolution ion mobility spectrometry with mass selected detection. Analytica Chimica Acta 404:273–283

    Article  CAS  Google Scholar 

  7. Lawrence AH (1986) Ion mobility spectrometry/mass spectrometry of some prescription and illicit drugs. Analytical Chemistry 58:1269–1272

    Article  CAS  Google Scholar 

  8. Eatherton RL, Morrissey MA, Hill HH (1988) Comparison of ion mobility constants of selected drug after capillary gas chromatography and capillary supercritical fluid chromatography. Analytical Chemistry 60:2240–2243

    Article  CAS  Google Scholar 

  9. Lawrence AH (1989) Characterization of benzodiazepine drugs by ion mobility spectrometry. Analytical Chemistry 61:343–349

    Article  CAS  Google Scholar 

  10. Nanji AA, Lawrence AH, Mikhael NZ (1987) Use of skin surface sampling and ion mobility spectrometry as a preliminary screening method for drug detection in an emergency room. Journal of Toxicology - Clinical Toxicology 25:501–515

    CAS  Google Scholar 

  11. Eatherton RL, Morrissey MA, Hill HH (1988) Comparison of ion mobility constants of selected drugs after capillary gas chromatography and capillary supercritical fluid chromatography. Analytical Chemistry 60:2240–2243

    Article  CAS  Google Scholar 

  12. Lawrence AH (1987) Detection of drug residues on the hands of subjects by surface sampling and ion mobility spectrometry. Forensic Science International 34:73–83

    Article  CAS  Google Scholar 

  13. Fytche LM, Hupe M, Kovar JB, Pilon P (1992) Ion mobility spectrometry of drugs of abuse in customs scenarios: concentration and temperature study. Journal of Forensic Sciences 37:1550–1566

    CAS  Google Scholar 

  14. Kanu AB, Hill HH (2007) Identity confirmation of drugs and explosives in ion mobility spectrometry using a secondary drift gas. Talanta 73:692–699

    Article  CAS  Google Scholar 

  15. Fytche LM, Hupe M, Kovar JB, Pilon P (1992) Ion Mobility Spectrometry of Drugs of Abuse in Customs Scenarios - Concentration and Temperature Study. Journal of Forensic Sciences 37:1550–1566

    CAS  Google Scholar 

  16. Cohen MJ, Wernlund RF, Stimac RM (1984) The ion mobility spectrometer for high explosive vapor detection. Journal of the Institute of Nuclear Materials Management XIII:220

    Google Scholar 

  17. Buxton TL, Harrington PDB (2001) Rapid mutivariate curve resolution applied to identification of explosives by ion mobility spectrometry. Analytica Chimica Acta 434:269–282

    Article  CAS  Google Scholar 

  18. Fricano L et al (2001) A novel portal design for rapid real tme detection of explosives` vapors and particles. International Journal for Ion Mobility Spectrometry 3:69

    Google Scholar 

  19. Pfeifer KB, Sanchez RC (2002) Miniaturized ion mobility spectrometer system for explosives and contraband detection. International Journal for Ion Mobility Spectrometry 5:63–66

    CAS  Google Scholar 

  20. Eiceman GA, Stone JA (2004) Ion mobility spectrometers in national defense. Analytical Chemistry 76:390A–397A

    CAS  Google Scholar 

  21. Perr JM, Furton KG, Almirall JR (2005) Solid phase microextraction ion mobility spectrometer interface for explosive and taggant detection. Journal of Separation Science 28:177–183

    Article  CAS  Google Scholar 

  22. Vautz W, Baumbach JI (2008) Exemplar application of multi-capillary column ion mobility spectrometry for biological medical purpose. International Journal for Ion Mobility Spectrometry 11:35–42

    Article  CAS  Google Scholar 

  23. Amann A, Spanel P, Smith D (2007) Breath analysis: the approach towards clinical applications. Mini-Reviews in Medicinal Chemistry 7:115–129

    Article  CAS  Google Scholar 

  24. Baumbach JI, Vautz W, Ruzsanyi V, Freitag L (2005) In: Anmann A, Smith D (eds) Breath analysis for clinical diagnosis and therapeutic monitoring. World Scientific, Singapore, pp 53–66

    Chapter  Google Scholar 

  25. Baumbach J et al (2007) IMS2–An integrated medical software system for early lung cancer detection using ion mobility spectrometry data of human breath. Journal of Integrative Bioinformatics 4(75):71–12

    Google Scholar 

  26. Baumbach, J.I. Ion Mobility Spectrometry coupled with Multi-Capillary Columns for Metabolic Profiling of Human Breath. Journal of Breath Research (2009).

  27. Westhoff, M. et al. Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of lung cancer patients – Results of a pilot study. Thorax 64 (2008).

  28. Davies AN, Baumbach JI (2008) Early lung cancer diagnostics by ion mobility spectrometry data handling. Spectroscopy Europe 20:18–21

    CAS  Google Scholar 

  29. Westhoff M, Litterst P, Freitag L, Baumbach JI (2007) Ion mobility spectrometry in the diagnosis of sarcoidosis: results of a feasibility study. Journal of Physiology and Pharmacology 58:739–751

    Google Scholar 

  30. Westhoff M et al (2006) Ion mobility spectrometry – a new method in the diagnostic approach to sarcoidosis? – Preliminary data. European Respiratory Journal 28:111S

    Google Scholar 

  31. Baumbach JI, Westhoff M (2006) Ion mobility spectrometry to detect lung cancer and airway infections. Spectroscopy Europe 18:22–27

    CAS  Google Scholar 

  32. Rauch, P.J., Harrington, P. & Davis, D.M. Ion Mobility Spectrometer Measures Food Flavor Freshness. Food Technol., 83–85 (1996).

  33. Karpas Z, Tilman B, Gdalevsky R, Lorber A (2002) Determination of volatile biogenic amines in muscle food products by ion mobility spectrometry. Analytica Chimica Acta 463:155–163

    Article  CAS  Google Scholar 

  34. Vautz W et al (2006) Ion mobility spectrometry for food quality and safety. Food Additives and Contaminants 23:1064–1073

    Article  CAS  Google Scholar 

  35. Raatikainen O, Hiltunen T, Törmikoski K, Hyvönen P, Paakkanen H (2007) Ion mobility spectrometry based gas detector MGD-1: applications to food process monitoring and food quality assessment. International Journal for Ion Mobility Spectrometry 10:38–43

    Google Scholar 

  36. Maddula, S., Blank, L., Schmid, A. & Baumbach, J.I. Detection of volatile metabolites of Escherichia coli by multi capillary column coupled ion mobility spectrometry. Analytical and Bioanalytical Chemistry (2009).

  37. Baumbach JI (2006) Process analysis using ion mobility spectrometry. Analytical and Bioanalytical Chemistry 384:1059–1070

    Article  CAS  Google Scholar 

  38. Irie T, Mitsui Y, Hasumi K (1992) A drift tube for monitoring ppb trace water. Japanese Journal of Applied Physics 31:2615

    Google Scholar 

  39. Sielemann, S. et al. in Field Screening Europe. (eds. J. Gottlieb, H. Hötzel & K. Huck)Karlsruhe; 1997).

  40. Xie Z, Sielemann S, Schmidt H, Baumbach JI (2001) A novel method for the detection of MTBE: ion mobility spectrometry coupled to multi capillary column. International Journal for Ion Mobility Spectrometry 4:77–83

    CAS  Google Scholar 

  41. Borsdorf H et al (2001) Rapid on-site determination of chlorobenzene in water samples using ion mobility spectrometry. Analytica Chimica Acta 440:63–70

    Article  CAS  Google Scholar 

  42. Dion HM, Ackermann LK, Hill HHJ (2002) Detection of ionorganic ions from water by electrospray ionization-ion mobility spectrometry. Talanta 57:1161–1171

    Article  CAS  Google Scholar 

  43. Carrico JP et al (1986) Chemical detection and alarm for hazardous chemicals. Am. Lab. 155–7:159–163

    Google Scholar 

  44. Roehl RE (1991) Environmental and process applications for ion mobility spectrometry. Applied Spectroscopy Reviews 26:1–57

    Article  CAS  Google Scholar 

  45. Kolehmainen M, Rönkkö P, Raatikainen O (2003) Monitoring of yeast fermentation by ion mobility spectrometry measurement and data visualisation with Self-Organizing Maps. Analytica Chimica Acta 484:93–100

    Article  CAS  Google Scholar 

  46. Vautz, W., Mauntz, W., Engell, S. & Baumbach, J.I. Monitoring of Emulsion Polymerisation Processes using Ion Mobility Spectrometry–A Pilot Study. Macromolecular Reaction Engineering 3 (2009).

  47. Prasad, S. et al. Analysis of bacteria by pyrolysis gas chromatography-differential mobility spectrometry and isolation of chemical components with a dependence on growth temperature. Analyst (Cambridge, U. K.) FIELD Full Journal Title:Analyst (Cambridge, United Kingdom) 132, 1031–1039 (2007).

  48. Shvartsburg, A.A., Tang, K. & Smith, R.D. 57pp. ((Battelle Memorial Institute, USA). WO; 2006).

  49. Shvartsburg AA et al (2006) Field asymmetric waveform ion mobility spectrometry studies of proteins: Dipole alignment in ion mobility spectrometry? Journal of Physical Chemistry B 110:21966–21980

    Article  CAS  Google Scholar 

  50. Shvartsburg AA et al (2006) Field asymmetric waveform ion mobility spectrometry studies of proteins: dipole alignment in ion mobility spectrometry? Journal of Physical Chemistry B FIELD Full Journal Title:Journal of Physical Chemistry B 110:21966–21980

    CAS  Google Scholar 

  51. Harrington P, Reese ES, Rauch PJ (1997) interactive self-modeling mixture analysis of ion mobility spectra. Applied Spectroscopy 51:808–816

    Article  CAS  Google Scholar 

  52. Harrington PB, Buxton TL, Chen G (2001) Classification of bacteria by thermal methylation hydrolysis ion mobility spectrometry using SIMPLISMA and multidimensional wavelet compression. International Journal for Ion Mobility Spectrometry 4(2):148–151

    Google Scholar 

  53. Harrington, P.B., Rauch, P.J., Tong, J.Y. & Davis, D.M. Chemometric Tools for Advantageous Use of Dynamic IMS Data. Proc. 6th Int. Workshop Ion Mobility Spectrom., 281–303 (1998).

  54. Harrington PDB, Rauch PJ, Cai C (2001) Multivariate Curve Resolution of Wavelet and Fourier Compressed Spectra. Analytical Chemistry 73:3247–3256

    Article  CAS  Google Scholar 

  55. Harrington, P.D.B., Schmitt, N.C., Atkinson, D.A. & Ewing, R.G. AGFD-1922002).

  56. Bader S, Urfer W, Baumbach J (2005) Processing ion mobility spectrometry data to characterize group differences in a multiple class comparison. International Journal for Ion Mobility Spectrometry 8:1–4

    Google Scholar 

  57. Bader S, Urfer W, Baumbach JI (2007) Reduction of ion mobility spectrometry data by clustering characteristic peak structures. Journal of Chemometrics 20:128–135

    Article  Google Scholar 

  58. Bödeker B, Vautz W, Baumbach JI (2008) Peak finding and referencing in MCC/IMS–data. International Journal for Ion Mobility Spectrometry 11:83–88

    Article  Google Scholar 

  59. Bödeker B, Vautz W, Baumbach JI (2008) Peak comparison in MCC/IMS–Data–Searching for potential biomarkers in human breath data. International Journal for Ion Mobility Spectrometry 11:89–93

    Article  Google Scholar 

  60. Bödeker B, Vautz W, Baumbach JI (2008) Visualisation of MCC/IMS–Data. International Journal for Ion Mobility Spectrometry 11:77–82

    Article  Google Scholar 

  61. Bader S, Urfer W, Baumbach JI (2008) Preprocessing of ion mobility spectra by lognormal detailing and wavelet transform. International Journal for Ion Mobility Spectrometry 11:43–50

    Article  CAS  Google Scholar 

  62. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics 11:431–441

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of the Bundesministerium für Bildung und Forschung and the Ministerium für Innovation, Wissenschaft, Forschung und Technologie des Landes Nordrhein-Westfalen is gratefully acknowledged. The work was funded partly by the projects BAMOD (Breath-gas analysis for molecular-oriented detection of minimal diseases–LSHC-CT-2005-019031) and SGL for USaR (Second Generation Locator for Urban Search and Rescue Operations – FP7-SEC-2007-1 Project 217967) of the European Union and the high-tech strategy funds of the Federal Republic of Germany (project Metabolit – 01SF0716).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertram Bödeker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bödeker, B., Baumbach, J.I. Analytical description of IMS-signals. Int. J. Ion Mobil. Spec. 12, 103–108 (2009). https://doi.org/10.1007/s12127-009-0024-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-009-0024-y

Keywords

Navigation