Skip to main content
Log in

Atmospheric phenomena deduced from radiosonde and GPS occultation measurements for various application related studies

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The tropopause height and tropopause temperature are sensitive to temperature changes in troposphere and stratosphere. These are the measures of global climatic variability. Atmospheric profiles of temperature, refractivity and water vapour are always needed for communication, navigation and atmospheric modeling studies. The tropopause characteristics over the Indian region have been studied using radio occultation measurements (CHAMP) on the basis of cold point criterion. Tropopause height shows large variation in the latitude range ∼30°–40°N during winter. Tropopause temperature less than −82°C, assumed to facilitate troposphere to stratosphere air transport, is observed at a number of tropical Indian locations and no seasonal pattern is observed in its occurrence. The bias in temperature and refractivity deduced from radiosonde and radio occultation measurements is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angell J K and Korshover J 1974 Quassi-biennial oscillation and long-term fluctuations in tropopause pressure and temperature and the relation to stratospheric water vapour; Mon. Weather Rev. 102 29–34.

    Article  Google Scholar 

  • Fu Q, Johanson C M, Wallace J M and Reichler T 2006 Enhanced mid-latitude tropospheric warming in satellite measurements; Science 312 1179.

    Article  Google Scholar 

  • Gregory A Postel and Mathew H Hitchman 2001 A case study of Rossby wave breaking along subtropical tropopause; Mon. Weather Rev. 129 2555–2569.

    Article  Google Scholar 

  • Holton J R, Haynes P H, McIntyre M E, Douglass A R, Rood R B and Pfister L 1995 Stratosphere-troposphere exchange; Rev. Geophys. 33 403–439.

    Article  Google Scholar 

  • Hudson R D, Andrade M F, Follette M B and Frolov A D 2006 The total ozone field separated into meteorological regimes — Part II: Northern Hemisphere mid-latitude total ozone trends; Atmos. Chem. Phys. 6 5183–5191.

    Google Scholar 

  • Jain A R, Siddarth Shankar Das, Tuhin K Mandal and Mitra A P 2006 Observations of extremely low temperature over Indian tropical region during monsoon and post monsoon months: Possible implications; J. Geophys. Res. 111 D07106.

  • Kishore P, Namboothiri S P, Igarashi K, Jonathan H Jiang, Chi O Ao and Larry J Roamns 2006 Climatological characteristics of the tropical tropopause parameters derived from GPS/CHAMP and GPS/SAC-C satellite measurements; J. Geophys. Res. 111 D20, D20110, 10.1029/2005JD006827

  • Kuo Y H, Wee T K, Sokolovskiy S, Rocken C, Schreiner W, Hunt D and Anthes R A 2004 Inversion and Error Estimation of GPS Radio Occultation Data; J. Meteor. Soc. Japan 82(1B) 507–531.

    Article  Google Scholar 

  • Kuo Y H, Schreiner WS, Wang J, Rossiter D L and Zhang Y 2005 Comparison of GPS radio occultation sounding with radiosondes; Geophys. Res. Lett. 132 L 05817.

    Google Scholar 

  • Kurisinky E R, Hajj G A, Schofield J T, Linfield R P and Hardy K R 1997 Observing earth’s atmosphere with radio occultation measurement using the global positioning system; J. Geophys. Res. 102(D19) 23,429–23,465.

    Google Scholar 

  • Narayana Rao D, Venkata Ratnam V, Krishna Murthy B V, Jagannadha Rao V V M, Sanjay Kumar Mehtha, Debashis Nath and Ghouse Basha S 2007 Identification of tropopause using bending angle profile from GPS radio occultation (RO): A radio tropopause; Geophys. Res. Lett. 34 L15809, doi: 10.1029/2007GL029709.

  • Newel R E and Gould Stewart S 1981 A stratospheric fountain?; J. Atmos. Sci. 38 2789–2796.

    Article  Google Scholar 

  • Randel W J, Wu F and Gaffen D J 2000 Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses; J. Geophys. Res. 105(D12) 15,509–15,523.

    Article  Google Scholar 

  • Randel WJ, Seidel D J and Laura L Pan 2007 Observational characteristics of double tropopauses; J. Geophys. Res. 112 D07309.

    Google Scholar 

  • Reid G C and Gage K S 1996 The tropical tropopause over the western Pacific: wave driving, convection and the annual cycle; J. Geophys. Res. 101(D16) 21,233–21,241.

    Article  Google Scholar 

  • Schmidt T, Heise S, Wickert J, Beyerle G and Reigber C 2005 GPS radio occultation with CHAMP and SACC: Global monitoring of thermal tropopause parameters; Atmos. Chem. Phys. 5 1473–1488.

    Article  Google Scholar 

  • Seidel D J and Randel W J 2007 Recent widening of tropical belt; J. Geophys. Res. 112 D20113.

  • Sunil Kumar S V, Parameswaran K and Krishna Murthy B V 2003 Lidar observation of cirrus clod near tropical tropopause: general features; Atmos. Res. 66 201–225.

    Article  Google Scholar 

  • Thuburn J and Craig G C 2002 On the temperature structure of the tropical substratosphere; J. Geophys. Res. 107(D2) 1029/2001JD000488.

    Google Scholar 

  • Venkat Ratnam M, Tsuda T, Shiotani M and Fujiwara M 2005 New characteristics of tropical tropopause revealed by CHAMP/GPS measurements; SOLA 1 185–188.

    Article  Google Scholar 

  • Wickert J, Galas R, Beyerle G, Konig R and Reigber C 2001 GPS ground station data for CHAMP radio occultation measurements; Phys. Chem. Earth (A) 26 503–511.

    Article  Google Scholar 

  • Wickert J, Schmidt T, Beyerle G, Konig R, Reigber C and Jakowski N 2004 The radio occultation experiment aboard CHAMP operational data analysis and validation of vertical atmospheric profiles; J. Meteor. Soc. Japan 82(1B) 381–395.

    Article  Google Scholar 

  • Zhou X L, Marvin A Geller and Minghua Zhang 2001 Cooling trend of tropical tropopause temperature and its implications; J. Geophys. Res. 106(D2) 1511–1522.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Johny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johny, C.J., Sarkar, S.K. & Punyasesudu, D. Atmospheric phenomena deduced from radiosonde and GPS occultation measurements for various application related studies. J Earth Syst Sci 118, 49–59 (2009). https://doi.org/10.1007/s12040-009-0005-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-009-0005-x

Keywords

Navigation