Skip to main content

Identification of Tropopause Height Using COSMIC-2 Occultation Atmospheric Refractivity

  • Conference paper
  • First Online:
China Satellite Navigation Conference (CSNC 2024) Proceedings (CSNC 2024)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1092))

Included in the following conference series:

  • 299 Accesses

Abstract

The radio occultation (RO) observation data provided by the second generation of The Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) were used to study and verify the method of determining the tropopause height based on atmospheric refractivity covariance transform. The principle of selecting the scale factor a in the atmospheric refractivity covariance transform is discussed based on the occultation events of GPS and GLONASS. It is found that the vertical variation of the refractivity in the lower troposphere region is smoother when a is taken as 30 km, and the prominent peaks of the refractivity profiles are more conducive to the determination of the tropopause. Comparing the atmospheric refractivity with the covariance-transformed atmospheric refractivity, it is found that the change of latter is more obvious and prominent, which can be used for the determination of the tropopause. According to the RO data in the low, middle and high latitudes, the tropopause heights obtained by the atmospheric refractivity covariance transform was compared with the cold point tropopause (CPT) and the temperature lapse rate tropopause (LRT) heights determined by the occultation temperature profile in the same occultation event, and the results show that there is a remarkable consistency between the three results at different latitudes, which means that the method used to determine the tropopause height after the covariance transformation of the atmospheric refractivity is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hoinka, K.P.: The tropopause: discovery, definition and demarcation. Meteorol. Z. 6 (1997)

    Google Scholar 

  2. Shepherd, T.G.: Issues in stratosphere-troposphere coupling. J. Meteorol. Soc. Jpn. Ser. II 80(4B), 769–792 (2002)

    Google Scholar 

  3. Appenzeller, C., Holton, J.R., Rosenlof, K.H.: Seasonal variation of mass transport across the tropopause. J. Geophys. Res.: Atmos. 101(D10), 15071–15078 (1996)

    Article  Google Scholar 

  4. Santer, B.D., Wehner, M.F., Wigley, T.M.L., et al.: Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301(5632), 479–483 (2003)

    Article  Google Scholar 

  5. Gettelman, A.: A climatology of the tropical tropopause layer. J. Meteorol. Soc. Jpn. Ser. II 80(4B), 911–924 (2002)

    Google Scholar 

  6. Wang, W., Matthes, K., Schmidt, T., et al.: Recent variability of the tropical tropopause inversion layer. Geophys. Res. Lett. 40(23), 6308–6313 (2013)

    Article  Google Scholar 

  7. World Meteorological Organization (WMO): Definition of the tropopause. WMO Bull. 6, Geneva, Switzerland (1957)

    Google Scholar 

  8. Highwood, E.J., Hoskins, B.J.: The tropical tropopause. Q. J. R. Meteorol. Soc. 124(549), 1579–1604 (1998)

    Article  Google Scholar 

  9. Pan, L.L., Honomichl, S.B., Bui, T.V., et al.: Lapse rate or cold point: the tropical tropopause identified by in situ trace gas measurements. Geophys. Res. Lett. 45(19), 10756–10763 (2018)

    Article  Google Scholar 

  10. Schmidt, T., Wickert, J., Beyerle, G., et al.: Tropical tropopause parameters derived from GPS radio occultation measurements with CHAMP. J. Geophys. Res.: Atmos. 109(D13) (2004)

    Google Scholar 

  11. Borsche, M., Kirchengast, G., Foelsche, U.: Tropical tropopause climatology as observed with radio occultation measurements from CHAMP compared to ECMWF and NCEP analyses. Geophys. Res. Lett. 34(3) (2007)

    Google Scholar 

  12. Xian, T., Homeyer, C.R.: Global tropopause altitudes in radiosondes and reanalyses. Atmos. Chem. Phys. 19(8), 5661–5678 (2019)

    Article  Google Scholar 

  13. Seidel, D.J., Ross, R.J., Angell, J.K., et al.: Climatological characteristics of the tropical tropopause as revealed by radiosondes. J. Geophys. Res.: Atmos. 106(D8), 7857–7878 (2001)

    Article  Google Scholar 

  14. Kursinski, E.R., Hajj, G.A., Bertiger, W.I., et al.: Initial results of radio occultation observations of Earth’s atmosphere using the Global Positioning System. Science 271(5252), 1107–1110 (1996)

    Article  Google Scholar 

  15. Melbourne, W.G., Davis, E.S., Duncan, C.B., et al.: The application of spaceborne GPS to atmospheric limb sounding and global change monitoring (1994)

    Google Scholar 

  16. Kursinski, E.R., Hajj, G.A., Schofield, J.T., et al.: Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res.: Atmos. 102(D19), 23429–23465 (1997)

    Article  Google Scholar 

  17. Schmidt, T., Wickert, J., Beyerle, G., et al.: Global tropopause height trends estimated from GPS radio occultation data. Geophys. Res. Lett. 35(11) (2008)

    Google Scholar 

  18. Xu, X., Luo, J., Zhang, K.: An analysis of the structure and variation of the tropopause over China with GPS radio occultation data. J. Navig. 64(S1), S103–S111 (2011)

    Article  Google Scholar 

  19. Lewis, H.W.: A robust method for tropopause altitude identification using GPS radio occultation data. Geophys. Res. Lett. 36(12) (2009)

    Google Scholar 

  20. Yuan, L.L., Anthes, R.A., Ware, R.H., et al.: Sensing climate change using the global positioning system. J. Geophys. Res.: Atmos. 98(D8), 14925–14937 (1993)

    Article  Google Scholar 

  21. Xia, P., Shan, Y., Ye, S., et al.: Identification of tropopause height with atmospheric refractivity. J. Atmos. Sci. 78(1), 3–16 (2021)

    Article  Google Scholar 

  22. Gamage, N., Hagelberg, C.: Detection and analysis of microfronts and associated coherent events using localized transforms. J. Atmos. Sci. 50(5), 750–756 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to the National Natural Science Foundations of China (41764002, 62263023 and 62161002) and the Graduate Innovation Special Fund of Jiangxi province (YC2022-S019) for their support for this paper. Meanwhile, thanks to the COSMIC Data Analysis and Archive Center (CDAAC) for the free data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Aerospace Information Research Institute

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ni, T., Guo, H., Xiong, J., Lv, L., Wan, Z. (2024). Identification of Tropopause Height Using COSMIC-2 Occultation Atmospheric Refractivity. In: Yang, C., Xie, J. (eds) China Satellite Navigation Conference (CSNC 2024) Proceedings. CSNC 2024. Lecture Notes in Electrical Engineering, vol 1092. Springer, Singapore. https://doi.org/10.1007/978-981-99-6928-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6928-9_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6927-2

  • Online ISBN: 978-981-99-6928-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics