Skip to main content

Advertisement

Log in

Genome-wide screening reveals the emergence and divergence of RTK homologues in basal Metazoan Hydra magnipapillata

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Receptor tyrosine kinases (RTKs) are key components of cell–cell signalling required for growth and development of multicellular organisms. It is therefore likely that the divergence of RTKs and associated components played a significant role in the evolution of multicellular organisms. We have carried out the present study in hydra, a diploblast, to investigate the divergence of RTKs after parazoa and before emergence of triploblast phyla. The domain-based screening using Hidden Markov Models (HMMs) for RTKs in Genomescan predicted gene models of the Hydra magnipapillata genome resulted in identification of 15 RTKs. These RTKs have been classified into eight families based on domain architecture and homology. Only 5 of these RTKs have been previously reported and a few of these have been partially characterized. A phylogeny-based analysis of these predicted RTKs revealed that seven subtype duplications occurred between ‘parazoan–eumetazoan split’ and ‘diploblast–triploblast split’ in animal phyla. These results suggest that most of the RTKs evolved before the radiata–bilateria divergence during animal evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

CA:

Celera Assembler

ECD:

extracellular domain

DDR:

discoidin domain receptor tyrosine kinase

FGFR:

fibroblast growth factor receptor

HMMs:

Hidden Markov Models

JTT:

Jones–Taylor–Thornton

ME:

minimum evolution

MuSK:

muscle-specific kinase

PCR:

polymerase chain reaction

Ror:

receptor tyrosine kinase–like orphan receptor

RP:

Ringer-Phrap

RTKs:

receptor tyrosine kinases

RyK:

Wnt inhibitory receptor tyrosine kinase

TK:

tyrosine kinase

TM:

transmembrane

References

  • Aguinaldo AM, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA and Lake JA 1997 Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387 489–493

    Article  PubMed  CAS  Google Scholar 

  • Barolo S and Posakony JW 2002 Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signalling. Genes Dev. 16 1167–1181

    Article  PubMed  CAS  Google Scholar 

  • Bode HR 1992 Continuous conversion of neuron phenotype in hydra. Trends Genet. 8 279–284

    PubMed  CAS  Google Scholar 

  • Bridge DM, Stover NA and Steele RE 2000 Expression of a novel receptor tyrosine kinase gene and a paired-like homeobox gene provides evidence of differences in patterning at the oral and aboral ends of hydra. Dev. Biol. 220 253–262

    Article  PubMed  CAS  Google Scholar 

  • Castresana J 2000 Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17 540–552

    PubMed  CAS  Google Scholar 

  • Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei T, Balasubramanian PG, et al. 2010 The dynamic genome of Hydra. Nature (London) 464 592–596

    Article  CAS  Google Scholar 

  • Eddy SR 1998 Profile Hidden Markov Models. Bioinformatics 14 755–763

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC 2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32 1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Gerhart J 1999 1998 Warkany lecture: Signaling pathways in development. Teratology 60 226–239

    Article  PubMed  CAS  Google Scholar 

  • Grassot J, Mouchiroud G and Perrière G 2003 RTKdb: database of receptor tyrosine kinase. Nucleic Acids Res. 31 353–358

    Article  PubMed  CAS  Google Scholar 

  • Grassot J, Gouy M, Perrière G and Mouchiroud G 2006 Origin and Molecular Evolution of Receptor Tyrosine Kinases with Immunoglobulin-Like Domains. Mol. Biol. Evol. 23 1232–1241

    Article  PubMed  CAS  Google Scholar 

  • Gu J and Gu X 2003 Natural history and functional divergence of protein tyrosine kinases. Gene 317 49–57

    Article  PubMed  CAS  Google Scholar 

  • Guder C, Pinho S, Nacak TG, Schmidt HA, Hobmayer B, Niehrs C and Holstein TW 2006 An ancient Wnt-Dickkopf antagonism in Hydra. Development 13 901–911

    Article  Google Scholar 

  • Guindon S and Gascuel O 2003 A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52 696–704

    Article  PubMed  Google Scholar 

  • Heino TI, Karpanen T, Wahlstorm G, Pulkkinen M, Eriksson K, Alitalo and Roos C 2001 The Drosophila VEGF receptor homolog is expressed in hemocytes. Mech. Dev. 109 69–77

    Article  PubMed  CAS  Google Scholar 

  • Hobmayer B, Rentzsch F, Kuhn K, Happel CM, von Laue CC, Snyder P, Rothbacher U and Holstein TW 2000 WNT Signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature (London) 407 186–189

    Article  CAS  Google Scholar 

  • Horibata Y, Sakaguchi K, Okino N, Iida H, Inagaki M, Fujisawa T, Hama Y and Ito M 2004 Unique catabolic pathway of glycosphingolipids in a hydrozoan, Hydra magnipapillata, involving endoglycoceramidase. J. Biol. Chem. 279 33379–33389

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR and Thornton JM 1992 The rapid generation of mutation data matrices from protein sequences. Comp. Appl. Biosci. 8 275–282

    PubMed  CAS  Google Scholar 

  • Krogh A, Larsson B, von Heijne G and Sonnhammer ELL 2001 Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305 567–580

    Article  PubMed  CAS  Google Scholar 

  • Kullander K and Klein R 2002 Mechanisms and functions of Eph and ephrin signalling. Nat. Rev. Mol. Cell Biol. 3 475–486

    Google Scholar 

  • Matus DQ, Thomsen GH and Martindale MQ 2007 FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarians. Dev. Genes Evol. 217137–148

  • Murai KK and Pasquale EB 2003 ‘Eph’ective signaling: forward, reverse and crosstalk. J. Cell Sci. 116 282–2832

    Google Scholar 

  • Reidling JC, Miller MA and Steele RE 2000 Sweet Tooth, a Novel Receptor Proteintyrosine Kinase with C-type Lectin-like Extracellular Domains. J. Biol. Chem. 275 10323–10330

    Article  PubMed  CAS  Google Scholar 

  • Rentzsch F, Fritzenwanker JH, Scholz CB and Technau U 2008 FGF signalling controls formation of the apical sensory organ in the cnidarian Nematostella vectensis. Development 135 1761–1769

    Article  PubMed  CAS  Google Scholar 

  • Robinson DR, Wu YM and Lin SF 2000 The protein tyrosine kinase family of the human genome. Oncogene 19 5548–5557

    Article  PubMed  CAS  Google Scholar 

  • Rousset D, Agnes F, Lachaume P, Andre C and Galibert F 1995 Molecular evolution of the genes encoding receptor tyrosine kinase with immunoglobulinlike domains. J. Mol. Evol. 41 421–429

    Article  PubMed  CAS  Google Scholar 

  • Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME A, Mitros T, Richards GS, Conaco C, et al. 2010 The Amphimedon queenslandica genome and the evolution of animal complexity. Nature (London) 466 720–727

    Article  CAS  Google Scholar 

  • Steele RE, Lieu P, Mai NH, Shenk MA and Sarras Jr MP 1996 Response to insulin and the expression pattern of a gene encoding an insulin receptor homologue suggest a role for an insulin-like molecule in regulating growth and patterning in Hydra. Dev. Genes Evol. 206 247–259

  • Sudhop S, Coulier F, Bieller A, Vogt A, Hotz T and Hassel M 2004 Signalling by the FGFR like tyrosine kinase, Kringelchen, is essential for bud detachment in Hydra vulgaris. Development 131 4001–4011

    Article  PubMed  CAS  Google Scholar 

  • Suga H, Koyanagi M, Hoshiyama D, Ono K, Iwabe N, Kuma K and Miyata T 1999 Extensive gene duplication in the early evolution of animals before the parazoaneumetazoan split demonstrated by G proteins and protein tyrosine kinases from sponge and hydra. J. Mol. Evol. 48 646–653.

    Article  PubMed  CAS  Google Scholar 

  • Suga H, Katoh K and Miyata T 2001 Sponge homologs of vertebrate protein tyrosine kinases and frequent domain shufflings in the early evolution of animals before the parazoan eumetazoan split. Gene 280 195–201

    Article  PubMed  CAS  Google Scholar 

  • Suga H, Sasaki G, Kuma K, Nishiyori H, Hirose N, Zhi-Hui Su, Iwabe N and Takashi M 2008 Ancient divergence of animal protein tyrosine kinase genes demonstrated by a gene family tree including choanoflagellate genes. FEBS. Lett. 582 815–818

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M and Kumar S 2007 MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24 1596–1599

    Article  PubMed  CAS  Google Scholar 

  • van der Geer P, Hinter T and Lindberg RA 1994 Receptor protein tyrosine kinases and their signal transduction pathways. Annu. Rev. Cell Biol. 10 251–337

    Google Scholar 

Download references

Acknowledgements

We are grateful to Prof Thomas Bosch and Dr Georg Hemmrich from Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany, for discussions and comments on an earlier draft of the manuscript. PCR acknowledges financial support (Senior Research Fellowship, National Eligibility Test) from University Grants Commission, New Delhi. This work was funded by Department of Biotechnology, India, through Centre of Excellence in Epigenetics and by Agharkar Research Institute, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra Ghaskadbi.

Additional information

Corresponding editor: Tristram Wyatt

[Reddy PC, Bidaye SS and Ghaskadbi S 2011 Genome-wide screening reveals the emergence and divergence of RTK homologues in basal Metazoan Hydra magnipapillata. J. Biosci. 36 289–296] DOI 10.1007/s12038-011-9065-6

Supplementary materials pertaining to this article are available on the Journal of Biosciences Website at http://www.ias.ac.in/jbrosci/Jun2011/pp289-296/suppl.pdf

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.03 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, P., Bidaye, S.S. & Ghaskadbi, S. Genome-wide screening reveals the emergence and divergence of RTK homologues in basal Metazoan Hydra magnipapillata . J Biosci 36, 289–296 (2011). https://doi.org/10.1007/s12038-011-9065-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-011-9065-6

Keywords

Navigation