Skip to main content

Advertisement

Log in

High Resolution Array-CGH Characterization of Human Stem Cells Using a Stem Cell Focused Microarray

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Human embryonic and induced pluripotent stem cells (ESCs, iPSCs) that are cultured for an extended period of time are susceptible to genomic instability. Chromosomal aberrations decrease the reliability and reproducibility of experiments and could deem the cells unusable for therapeutic purposes. The genetic stability of human ESCs and iPSCs is commonly monitored by karyotype analysis. However, this low-resolution technique can only identify large aneuploidies. A reliable, high-resolution technique to detect genomic aberrations at a cost comparable to karyotyping is needed to better characterize stem cell lines. We have designed a stem cell focused array-comparative genomic hybridization microarray that covers the entire genome at high resolution with increased probe coverage in over 60 stem cell associated genes and more than 195 cancer related genes. Several iPSC lines were analyzed using the focused microarray and compared with either karyotyping or a standard Agilent 44K microarray. In addition to the abnormalities detected by these platforms, the custom microarray identified several small duplications spanning stem cell and/or cancer related genes. Scientists using a stem cell focused microarray to characterize their stem cells will be aware of the structural variants present in their cells and be more confident in their experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Draper, J. S., Smith, K., Gokhale, P., Moore, H. D., Maltby, E., Johnson, J., et al. (2004). Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nature Biotechnology, 22, 53–54.

    Article  CAS  Google Scholar 

  2. Maitra, A., Arking, D. E., Shivapurkar, N., Ikeda, M., Stastny, V., Kassauei, K., et al. (2005). Genomic alterations in cultured human embryonic stem cells. Nature Genetics, 37, 1099–1103.

    Article  CAS  Google Scholar 

  3. Prokhorovich, M. A., Lagar’kova, M. A., Shilov, A. G., Karamysheva, T. V., Kiselyov, S. L., & Rubtsov, N. B. (2007). Cultures of hESM human embryonic stem cells: chromosomal aberrations and karyotype stability. Bulletin of Experimental Biology and Medicine, 144, 126–129.

    Article  CAS  Google Scholar 

  4. Spits, C., Mateizel, I., Geens, M., Mertzanidou, A., Staessen, C., Vandeskelde, Y., et al. (2008). Recurrent chromosomal abnormalities in human embryonic stem cells. Nature Biotechnology, 26, 1361–1363.

    Article  CAS  Google Scholar 

  5. Mitalipova, M. M., Rao, R. R., Hoyer, D. M., Johnson, J. A., Meisner, L. F., Jones, K. L., et al. (2005). Preserving the genetic integrity of human embryonic stem cells. Nature Biotechnology, 23, 19–20.

    Article  CAS  Google Scholar 

  6. Shaffer, L. G., & Lupski, J. R. (2000). Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annual Review of Genetics, 34, 297–329.

    Article  CAS  Google Scholar 

  7. Chin, M. H., Mason, M. J., Xie, W., Volinia, S., Singer, M., Peterson, C., et al. (2009). Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell, 5, 111–123.

    Article  CAS  Google Scholar 

  8. Shinawi, M., & Cheung, S. W. (2008). The array CGH and its clinical applications. Drug Discovery Today, 13, 760–770.

    Article  CAS  Google Scholar 

  9. Scott, S., Cohen, N., Brandt, T., Toruner, G., Desnick, R., & Edelmann, L. (2010). Detection of low-level mosaicism and placental mosaicism by oligonucleotide array comparative genomic hybridization. Genetics in Medicine, 12, 85–92.

    Article  CAS  Google Scholar 

  10. Wu, H., Kim, K. J., Mehta, K., Paxia, S., Sundstrom, A., Anantharaman, T., et al. (2008). Copy number variant analysis of human embryonic stem cells. Stem Cells, 26, 1484–1489.

    Article  CAS  Google Scholar 

  11. Scotto, L., Narayan, G., Nandula, S. V., Arias-Pulido, H., Subramaniyam, S., Schneider, A., et al. (2008). Identification of copy number gain and overexpressed genes on chromosome arm 20q by an integrative genomic approach in cervical cancer: potential role in progression. Genes Chromosomes Cancer, 47, 755–765.

    Article  CAS  Google Scholar 

  12. Guled, M., Myllykangas, S., Frierson, H. F., Jr., Mills, S. E., Knuutila, S., & Stelow, E. B. (2008). Array comparative genomic hybridization analysis of olfactory neuroblastoma. Modern Pathology, 21, 770–778.

    Article  CAS  Google Scholar 

  13. Beaulieu, N., Morin, S., Chute, I. C., Robert, M. F., Nguyen, H., & MacLeod, A. R. (2002). An essential role for DNA methyltransferase DNMT3B in cancer cell survival. The Journal of Biological Chemistry, 277, 28176–28181.

    Article  CAS  Google Scholar 

  14. Kassis, E. S., Zhao, M., Hong, J. A., Chen, G. A., Nguyen, D. M., & Schrump, D. S. (2006). Depletion of DNA methyltransferase 1 and/or DNA methyltransferase 3b mediates growth arrest and apoptosis in lung and esophageal cancer and malignant pleural mesothelioma cells. The Japanese Journal of Thoracic and Cardiovascular Surgery, 131, 298–306.

    Article  CAS  Google Scholar 

  15. Barone, M. V., Pepperkok, R., Peverali, F. A., & Philipson, L. (1994). Id proteins control growth induction in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 91, 4985–4988.

    Article  CAS  Google Scholar 

  16. Langlands, K., Down, G. A., & Kealey, T. (2000). Id proteins are dynamically expressed in normal epidermis and dysregulated in squamous cell carcinoma. Cancer Research, 60, 5929–5933.

    CAS  Google Scholar 

  17. Kebebew, E., Peng, M., Treseler, P. A., Orlo, C. H., Duh, Q., Ginzinger, D., et al. (2004). Id1 gene expression is up-regulated in hyperplastic and neoplastic thyroid tissue and regulates growth and differentiation in thyroid cancer cells. The Journal of Clinical Endocrinology and Metabolism, 89, 6105–6111.

    Article  CAS  Google Scholar 

  18. Monte, M., Benetti, R., Buscemi, G., Sandy, P., Del Sal, G., & Schneider, C. (2003). The cell cycle-regulated protein human GTSE-1 controls DNA damage-induced apoptosis by affecting p53 function. The Journal of Biological Chemistry, 278, 30356–30364.

    Article  CAS  Google Scholar 

  19. Baker, D. E. C., Harrison, N. J., Maltby, E., Smith, K., Moore, H. D., Shaw, P. J., et al. (2007). Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nature Biotechnology, 25, 207–215.

    Article  CAS  Google Scholar 

  20. Yang, S., Lin, G., Tan, Y., Zhou, Di., Deng, L., Cheng, D., et al. (2008). Tumor progression of culture-adapted human embryonic stem cells during long-term culture. Genes Chromosomes Cancer, 47, 665–679.

    Article  CAS  Google Scholar 

  21. Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., et al. (2004). Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proceedings of the National Academy of Sciences of the United States of America, 101, 9309–9314.

    Article  CAS  Google Scholar 

  22. Richards, M., Tan, S. P., Tan, J. H., Chan, W. K., & Bongso, A. (2004). The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells, 22, 51–64.

    Article  CAS  Google Scholar 

  23. Skottman, H., Mikkola, M., Lundin, K., Olsson, C., Strömberg, A. M., Tuuri, T., et al. (2005). Gene expression signatures of seven individual human embryonic stem cell lines. Stem Cells, 23, 1343–1356.

    Article  CAS  Google Scholar 

  24. International Stem Cell Initiative, Adewumi, O., Aflatoonian, B., Ahrlund-Richter, L., Amit, M., Andrews, P. W., et al. (2007). Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nature Biotechnology, 25, 803–816.

    Article  CAS  Google Scholar 

  25. Lahad, J. P., Mills, G. B., & Commbes, K. R. (2005). Stem cell-ness: a “magic marker” for cancer. Journal of Clinical Investigation, 115, 1463–1467.

    Article  CAS  Google Scholar 

  26. Tanaka, S., Mori, M., Akiyoshi, T., Tanaka, Y., Mafune, K., Wands, J. R., et al. (1997). Coexpression of Grb7 with epidermal growth factor receptor or Her2/erbB2 in human advanced esophageal carcinoma. Cancer Research, 57, 28–31.

    CAS  Google Scholar 

  27. Kauraniemi, P., Bärlund, M., Monni, O., & Kallioniemi, A. (2001). New amplified and highly expressed genes discovered in the ERBB2 amplicon in breast cancer by cDNA microarrays. Cancer Research, 61, 8235–8240.

    CAS  Google Scholar 

  28. Skotheim, R. I., Monni, O., Mousses, S., Fossa, S. D., Kallioniemi, O. P., Lothe, R. A., et al. (2002). New insights into testicular germ cell tumorigenesis from gene expression profiling. Cancer Research, 62, 2359–2364.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron M. Elliott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elliott, A.M., Hohenstein Elliott, K.A. & Kammesheidt, A. High Resolution Array-CGH Characterization of Human Stem Cells Using a Stem Cell Focused Microarray. Mol Biotechnol 46, 234–242 (2010). https://doi.org/10.1007/s12033-010-9294-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9294-1

Keywords

Navigation