Skip to main content

Advertisement

Log in

Genetics and autoantibodies

  • ETIO PATHOGENESIS OF AUTOIMMUNITY
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Autoimmune diseases (ADs) are chronic conditions initiated by the loss of immunological tolerance to self-antigens. The pathogenic hypothesis comprises a complex interaction between genetic, environmental and hormonal factors that interact with an individual over time generating a dysregulation of the immune system leading to disease development. Several polymorphic genes contribute to the development of ADs. Furthermore, age and gender play a major role by influencing hormone levels that can represent the fulcrum unbalancing from susceptibility to protection. Evidences suggest that while all these steps occur, the susceptible individual develops autoantibodies over a long time lapse. Such autoantibody production is genetically determined and finally, their presence seems to determine the clinical presentation of ADs. The genetic predisposition to the developments of autoantibodies and toward the disease process may overlap. The unveiling of these mechanisms could allow not only to treat but also to prevent the development of autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shoenfeld Y, Gilburd B, Abu-Shakra M, Amital H, Barzilai O, Berkun Y, Blank M, Zandman-Goddard G, Katz U, Krause I, Langevitz P, Levy Y, Orbach H, Pordeus V, Ram M, Sherer Y, Toubi E, Tomer Y. The mosaic of autoimmunity: genetic factors involved in autoimmune diseases–2008. Isr Med Assoc J. 2008;10:3–7.

    PubMed  Google Scholar 

  2. Tsokos GC. Systemic lupus erythematosus. N Engl J Med. 2001;365:2110–21.

    Article  Google Scholar 

  3. Gregersen PK. HLA class II polymorphism: implications for genetic susceptibility to autoimmune disease. Lab Invest. 1989;61:5–19.

    PubMed  CAS  Google Scholar 

  4. Zandman-Goddard G, Peeva E, Shoenfeld Y. Gender and autoimmunity. Autoimmun Rev. 2007;6:366–72.

    Article  PubMed  CAS  Google Scholar 

  5. Shoenfeld Y, Isenberg DA. The mosaic of autoimmunity. Immunol Today. 1989;10:23–6.

    Article  Google Scholar 

  6. Reveille JD. The genetic basis of autoantibody production. Autoimmun Rev. 2006;5:389–98.

    Article  PubMed  CAS  Google Scholar 

  7. Anaya JM, Corena R, Castiblanco J, Rojas-Villarraga A, Shoenfeld Y. The kaleidoscope of autoimmunity: multiple autoimmune syndromes and familial autoimmunity. Expert Rev Clin Immunol. 2007;3:623–35.

    Article  PubMed  CAS  Google Scholar 

  8. Shoenfeld Y, Blank M, Abu-Shakra M, Amital H, Barzilai O, Berkun Y, Bizzaro N, Gilburd B, Zandman-Goddard G, Katz U, Krause I, Langevitz P, Mackay IR, Orbach H, Ram M, Sherer Y, Toubi E, Gershwin ME. The mosaic of autoimmunity: prediction, autoantibodies, and therapy in autoimmune diseases–2008. Isr Med Assoc J. 2008;10:13–9.

    PubMed  Google Scholar 

  9. Shoenfeld Y, Zandman-Goddard G, Stojanovich L, Cutolo M, Amital H, Levy Y, Abu-Shakra M, Barzilai O, Berkun Y, Blank M, de Carvalho JF, Doria A, Gilburd B, Katz U, Krause I, Langevitz P, Orbach H, Pordeus V, Ram M, Toubi E, Sherer Y. The mosaic of autoimmunity: hormonal and environmental factors involved in autoimmune diseases–2008. Isr Med Assoc J. 2008;10:8–12.

    PubMed  Google Scholar 

  10. Allcock RJ. The major histocompatibility complex: a paradigm for studies of the human genome. Methods Mol Biol. 2012;882:1–7.

    Article  PubMed  CAS  Google Scholar 

  11. Hofstetter AR, Sullivan LC, Lukacher AE, Brooks AG. Diverse roles of non-diverse molecules: HLA class Ib molecules in host defense and control of autoimmunity. Curr Opin Immunol. 2011;23:104–10.

    Article  PubMed  CAS  Google Scholar 

  12. Wucherpfennig KW, Sethi D. T cell receptor recognition of self and foreign antigens in the induction of autoimmunity. Semin Immunol. 2011;23:84–91.

    Article  PubMed  CAS  Google Scholar 

  13. Uchanska-Ziegler B, Loll B, Fabian H, Hee CS, Saenger W, Ziegler A. HLA class I-associated diseases with a suspected autoimmune etiology: HLA-B27 subtypes as a model system. Eur J Cell Biol. 2012;91:274–86.

    Article  PubMed  CAS  Google Scholar 

  14. Moulton VR, Tsokos GC. Abnormalities of T cell signaling in systemic lupus erythematosus. Arthritis Res Ther. 2011;13:207.

    Article  PubMed  CAS  Google Scholar 

  15. Anaya JM, Rojas-Villarraga A, García-Carrasco M. The autoimmune tautology: from polyautoimmunity and familial autoimmunity to the autoimmune genes. Autoimmune Dis. 2012;2012:297193.

    PubMed  Google Scholar 

  16. Peng H, Zhou M, Xu WD, Xu K, Zhai Y, Li R, Wang W, Zhang YJ, Liu SS, Pan HF, Ye DQ. Association of PTPN22 C1858T Polymorphism and Type 1 Diabetes: a meta-analysis. Immunol Invest. 2012;41:484–96.

    Article  PubMed  CAS  Google Scholar 

  17. Perricone C, Ceccarelli F, Valesini G. An overview on the genetic of rheumatoid arthritis: a never-ending story. Autoimmun Rev. 2011;10:599–608.

    Article  PubMed  CAS  Google Scholar 

  18. Pradhan V, Borse V, Ghosh K. PTPN22 gene polymorphisms in autoimmune diseases with special reference to systemic lupus erythematosus disease susceptibility. J Postgrad Med. 2010;56:239–42.

    Article  PubMed  CAS  Google Scholar 

  19. Anaya JM, Kim-Howard X, Prahalad S, Cherñavsky A, Cañas C, Rojas-Villarraga A, Bohnsack J, Jonsson R, Bolstad AI, Brun JG, Cobb B, Moser KL, James JA, Harley JB, Nath SK. Evaluation of genetic association between an ITGAM non-synonymous SNP (rs1143679) and multiple autoimmune diseases. Autoimmun Rev. 2012;11:276–80.

    Article  PubMed  CAS  Google Scholar 

  20. Kim-Howard X, Maiti AK, Anaya JM, Bruner GR, Brown E, Merrill JT, Edberg JC, Petri MA, Reveille JD, Ramsey-Goldman R, Alarcon GS, Vyse TJ, Gilkeson G, Kimberly RP, James JA, Guthridge JM, Harley JB, Nath SK. ITGAM coding variant (rs1143679) influences the risk of renal disease, discoid rash and immunological manifestations in patients with systemic lupus erythematosus with European ancestry. Ann Rheum Dis. 2010;69:1329–32.

    Article  PubMed  Google Scholar 

  21. Naser SA, Arce M, Khaja A, Fernandez M, Naser N, Elwasila S, Thanigachalam S. Role of ATG16L, NOD2 and IL23R in Crohn’s disease pathogenesis. World J Gastroenterol. 2012;18:412–24.

    Article  PubMed  CAS  Google Scholar 

  22. Perricone C, Borgiani P, Romano S, Ciccacci C, Fusco G, Novelli G, Biancone L, Calabrese E, Pallone F. ATG16L1 Ala197Thr is not associated with susceptibility to Crohn’s disease or with phenotype in an Italian population. Gastroenterology. 2008;134:368–70.

    Article  PubMed  CAS  Google Scholar 

  23. Ellinghaus D, Ellinghaus E, Nair RP, Stuart PE, Esko T, Metspalu A, Debrus S, Raelson JV, Tejasvi T, Belouchi M, West SL, Barker JN, Kõks S, Kingo K, Balschun T, Palmieri O, Annese V, Gieger C, Wichmann HE, Kabesch M, Trembath RC, Mathew CG, Abecasis GR, Weidinger S, Nikolaus S, Schreiber S, Elder JT, Weichenthal M, Nothnagel M, Franke A. Combined analysis of genome-wide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. Am J Hum Genet. 2012;90:636–47.

    Article  PubMed  CAS  Google Scholar 

  24. Naser SA, Arce M, Khaja A, Fernandez M, Naser N, Elwasila S, Thanigachalam S. Role of ATG16L, NOD2 and IL23R in Crohn’s disease pathogenesis. World J Gastroenterol. 2012;18:412–24.

    Article  PubMed  CAS  Google Scholar 

  25. Borgiani P, Perricone C, Ciccacci C, Romano S, Novelli G, Biancone L, Petruzziello C, Pallone F. Interleukin-23R Arg381Gln is associated with susceptibility to Crohn’s disease but not with phenotype in an Italian population. Gastroenterology. 2007;133:1049–51.

    Article  PubMed  CAS  Google Scholar 

  26. Campbell et al. Autoimmune regulator controls T cell help for pathogenetic autoantibody production in collagen-induced arthritis. Arthritis Rheum. 2009;60:1683–93.

    Article  CAS  Google Scholar 

  27. Buckley RH. The Merck manual for health care professional, overview of immunodeficiency disorders, 2008.

  28. Jorgensen GH, Ornolfsson AE, Johannesson A, Gudmundsson S, Janzi M, Wang N, Hammarström L, Ludviksson BR. Association of immunoglobulin a deficiency and elevated thyrotropin-receptor autoantibodies in two Nordic countries. Hum Immunol. 2011;72:166–72.

    Article  PubMed  CAS  Google Scholar 

  29. Ferreira RC, Pan-Hammarström Q, Graham RR, Gateva V, Fontán G, Lee AT, Ortmann W, Urcelay E, Fernández-Arquero M, Núñez C, Jorgensen G, Ludviksson BR, Koskinen S, Haimila K, Clark HF, Klareskog L, Gregersen PK, Behrens TW, Hammarström L. Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nat Genet. 2010;42:777–80.

    Article  PubMed  CAS  Google Scholar 

  30. Gulez N, Karaca NE, Aksu G, Kutukculer N. Increased percentages of autoantibodies in immunoglobulin A-deficient children do not correlate with clinical manifestations. Autoimmunity. 2009;42:74–9.

    Article  PubMed  CAS  Google Scholar 

  31. Karaca NE, Gulez N, Aksu G, Azarsiz E, Kutukculer N. Does OM-85 BV prophylaxis trigger autoimmunity in IgA deficient children? Immunopharmacol. 2011;11:1747–51.

    Article  CAS  Google Scholar 

  32. Aghamohammadi A, Cheraghi T, Gharagozlou M, Movahedi M, Rezaei N, Yeganeh M, Parvaneh N, Abolhassani H, Pourpak Z, Moin M. IgA deficiency: correlation between clinical and immunological phenotypes. J Clin Immunol. 2009;29:130–6.

    Article  PubMed  CAS  Google Scholar 

  33. Jacob CM, Pastorino AC, Fahl K, Carneiro-Sampaio M, Monteiro RC. Autoimmunity in IgA deficiency: revisiting the role of IgA as a silent housekeeper. J Clin Immunol. 2008;28((Suppl.1)):S56–61.

    Article  PubMed  CAS  Google Scholar 

  34. Jorgensen GH, Thorsteinsdottir I, Gudmundsson S, Hammarstrom L, Ludviksson BR. Familial aggregation of IgAD and autoimmunity. Clin Immunol. 2009;131:233–9.

    Article  PubMed  CAS  Google Scholar 

  35. Liao WW, Arthur JW. Predicting peptide binding to Major Histocompatibility Complex molecules. Autoimmun Rev. 2011;10:469–73.

    Article  PubMed  CAS  Google Scholar 

  36. Hauser SL. An update on multiple sclerosis. J Neurol Sci. 2005;228:193–4.

    Article  PubMed  Google Scholar 

  37. Bach MA, Phan-Dinh-Tuy F, Tournier E, Chatenoud L, Bach JF, Martin C, Degos JD. Deficit of suppressor T cells in active multiple sclerosis. The Lancet. 1980;2:1221–3.

    Article  CAS  Google Scholar 

  38. Thompson AJ, Brazil J, Whelan CA, Martin EA, Hutchinson M, Feighery C. Peripheral blood T lymphocyte changes in multiple sclerosis: a marker of disease progression rather than of relapse? J Neurol Neurosurg Psychiat. 1986;49:905–12.

    Article  PubMed  CAS  Google Scholar 

  39. Veys EM, Hermanns P, Goldstein G, Kung P, Schindler J, Van Wauwe J. Determination of T lymphocyte subpopulations by monoclonal antibodies in rheumatoid arthritis. Influence of immunomodulating agents. Internat J Immunopharmacol. 1981;3:313–9.

    Article  CAS  Google Scholar 

  40. Fox RI, Fong S, Sabharwal N, Carstens SA, Kung PC, Vaughan JH. Synovial fluid lymphocytes differ from peripheral blood lymphocytes in patients with rheumatoid arthritis. J Immunol. 1982;128:351–4.

    PubMed  CAS  Google Scholar 

  41. Morimoto C, Reinherz EL, Schlossman SF, Schur PH, Mills JA, Steinberg AD. Alterations in immunoregulatory T cell subsets in active systemic lupus erythematosus. J Clin Investig. 1980;66:1171–4.

    Article  PubMed  CAS  Google Scholar 

  42. Morimoto C, Reinherz EL, Nadler LM, Distaso JA, Steinberg AD, Schlossman SF. Comparison in Tand B-cell markers in patients with Sj¨ogren’s syndrome and systemic lupus erythematosus. Clin Immunol Immunopathol. 1982;22:270–8.

    Article  PubMed  CAS  Google Scholar 

  43. Fox I, Carstens SA, Fong S, Robinson CA, Howell F, Vaughan JH. Use of monoclonal antibodies to analyze peripheral blood and salivary gland lymphocyte subsets in Sjogren’s syndrome. Arthritis Rheum. 1982;25:419–26.

    Article  PubMed  CAS  Google Scholar 

  44. Whiteside TL, Kumagai Y, Roumm AD, Almendinger R, Rodnan GP. Suppressor cell function and T lymphocyte subpopulations in peripheral blood of patients with progressive systemic sclerosis. Arthritis Rheum. 1983;26:841–7.

    Article  PubMed  CAS  Google Scholar 

  45. Gustafsson R, Totterman TH, Klareskog L, Hallgren R. Increase in activated T cells and reduction in suppressor inducer T cells in systemic sclerosis. Ann Rheum Dis. 1990;49:40–5.

    Article  PubMed  CAS  Google Scholar 

  46. O’Gorman MRG, Corrochano V, Roleck J, Donovan M, Pachman LM. Flow cytometric analyses of the lymphocyte subsets in peripheral blood of children with untreated active juvenile dermatomyositis. Clin Diagn Lab Immunol. 1995;2:205–8.

    PubMed  Google Scholar 

  47. Aleksza M, Szegedi A, Antal-Szalmás P, Irinyi B, Gergely L, Ponyi A, Hunyadi J, Sipka S, Zeher M, Szegedi G, Dankó K. Altered cytokine expression of peripheral blood lymphocytes in polymyositis and dermatomyositis. Ann Rheum Dis. 2005;64:1485–9.

    Article  PubMed  CAS  Google Scholar 

  48. Moreno-Otero R, Civeira MP, Suou T, Kanof ME, James SP, Jones EA. Reduced numbers of CD8 + T cells and B cell expression of Leu-8 antigen in peripheral blood of patients with primary biliary cirrhosis. Hepatogastroenterology. 1994;41:239–43.

    PubMed  CAS  Google Scholar 

  49. Buschard K, Ropke C, Madsbad S, Mehlsen J, Sørensen TB, Rygaard J. Alterations of peripheral T-lymphocyte subpopulations in patients with insulin-dependent (type 1) diabetes mellitus. J Clin Lab Immunol. 1983;10:127–31.

    PubMed  CAS  Google Scholar 

  50. Galluzzo A, Giordano C, Rubino G, Bompiani GD. Immunoregulatory T-lymphocyte subset deficiency in newly diagnosed type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1984;26:426–30.

    Article  PubMed  CAS  Google Scholar 

  51. Reinherz EL, Weiner HL, Hauser SL, Cohen JA, Distaso JA, Schlossman SF. Loss of suppressor T cells in active multiple sclerosis. Analysis with monoclonal antibodies. New Engl J Med. 1980;303:125–9.

    Article  PubMed  CAS  Google Scholar 

  52. Veys EM, Hermanns P, Goldstein G, Kung P, Schindler J, VanWauwe J. Determination of T lymphocyte subpopulations by monoclonal antibodies in rheumatoid arthritis. Influence of immunomodulating agents. Int J Immunopharmacol. 1981;3:313–9.

    Article  PubMed  CAS  Google Scholar 

  53. Thielemans C, Vanhaelst L, De Waele M, Jonckheer M, Van Camp B. Autoimmune thyroiditis: a condition related to a decrease in T-suppressor cells. Clin Endocrinol. 1981;15:259–63.

    Article  CAS  Google Scholar 

  54. Berrih S, Gaud C, Bach MA, Le Brigand H, Binet JP, Bach JF. Evaluation of T cell subsets in myasthenia gravis using anti-T cell monoclonal antibodies. Clin Exp Immunol. 1985;45:1–8.

    Google Scholar 

  55. Fox RI, Fong S, Sabharwal N, Carstens SA, Kung PC, Vaughan JH. Synovial fluid lymphocytes differ from peripheral blood lymphocytes in patients with rheumatoid arthritis. J Immunol. 1982;128:351–4.

    PubMed  CAS  Google Scholar 

  56. Ferreira MA, Mangino M, Brumme CJ, Zhao ZZ, Medland SE, Wright MJ, Nyholt DR, Gordon S, Campbell M, McEvoy BP, Henders A, Evans DM, Lanchbury JS, Pereyra F, International HIV Controllers Study, Walker BD, Haas DW, Soranzo N, Spector TD, de Bakker PI, Frazer IH, Montgomery GW, Martin NG. Quantitative trait loci for CD4:CD8 lymphocyte ratio are associated with risk of type 1 diabetes and HIV-1 immune control. Am J Hum Genet. 2010;86:88–92.

    Article  PubMed  CAS  Google Scholar 

  57. Amadori A, Zamarchi R, De Silvestro G, Forza G, Cavatton G, Danieli GA, Clementi M, Chieco-Bianchi L. Genetic control of the CD4/CD8 T-cell ratio in humans. Nat Med. 1995;1:1279–83.

    Article  PubMed  CAS  Google Scholar 

  58. Menard D, Mandeng MJ, Tothy MB, Kelembho EK, Gresenguet G, Talarmin A. Immunohematological reference ranges for adults from the Central African Republic. Clin Diagn Lab Immunol. 2003;10:443–5.

    PubMed  Google Scholar 

  59. Uppal SS, Verma S, Dhot PS. Normal values of CD4 and CD8 lymphocyte subsets in healthy Indian adults and the effects of sex, age, ethnicity, and smoking. Cytometry Part B. 2003;52:32–6.

    CAS  Google Scholar 

  60. Jentsch-Ullrich K, Koenigsmann M, Mohren M, Franke A. Lymphocyte subsets’ reference ranges in an age and gender-balanced population of 100 healthy adults—a monocentric German study. Clin Immunol. 2005;116:192–7.

    Article  PubMed  CAS  Google Scholar 

  61. Jiang W, Kang L, Lu HZ, Pan X, Lin Q, Pan Q. Normal values for CD4 and CD8 lymphocyte subsets in healthy Chinese adults from Shanghai. Clin Diagn Lab Immunol. 2004;11:811–3.

    PubMed  Google Scholar 

  62. Ho PC, Tang GWK, Lawton JWM. Lymphocyte subsets in patients with oestrogen deficiency. J Reprod Immunol. 1991;20:85–91.

    Article  PubMed  CAS  Google Scholar 

  63. Wingate PJ, McAulay KA, Anthony IC, Crawford DH. Regulatory T cell activity in primary and persistent Epstein-Barr virus infection. J Med Virol. 2009;81:870–7.

    Article  PubMed  CAS  Google Scholar 

  64. Pender MP. CD8+ T-Cell Deficiency, Epstein-Barr Virus Infection, Vitamin D deficiency, and steps to autoimmunity: a unifying hypothesis. Autoimmune Dis. 2012; 189096.

  65. Amital H, Szekanecz Z, Szücs G, Dankó K, Nagy E, Csépány T, Kiss E, Rovensky J, Tuchynova A, Kozakova D, Doria A, Corocher N, Agmon-Levin N, Barak V, Orbach H, Zandman-Goddard G, Shoenfeld Y. Serum concentrations of 25-OH vitamin D in patients with systemic lupus erythematosus (SLE) are inversely related to disease activity: is it time to routinely supplement patients with SLE with vitamin D? Ann Rheum Dis. 2010;69:1155–7.

    Article  PubMed  CAS  Google Scholar 

  66. van Venrooij WJ, Zendman AJ, Pruijn GJ. Autoantibodies to citrullinated antigens in (early) rheumatoid arthritis. Autoimmun Rev. 2006;6:37–41.

    Article  PubMed  CAS  Google Scholar 

  67. Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis JD, James JA. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med. 2003;349:1526–33.

    Article  PubMed  CAS  Google Scholar 

  68. Agmon-Levin N, Shapira Y, Selmi C, Barzilai O, Ram M, Szyper-Kravitz M, Sella S, Katz BS, Youinou P, Renaudineau Y, Larida B, Invernizzi P, Gershwin ME, Shoenfeld Y. A comprehensive evaluation of serum autoantibodies in primary biliary cirrhosis. J Autoimmun. 2010;34:55–8.

    Article  PubMed  CAS  Google Scholar 

  69. Israeli E, Grotto I, Gilburd B, Balicer RD, Goldin E, Wiik A, Shoenfeld Y. Anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic antibodies as predictors of inflammatory bowel disease. Gut. 2005;54:1232–6.

    Article  PubMed  CAS  Google Scholar 

  70. Radice A, Bianchi L, Sinico RA. Anti-neutrophil cytoplasmic autoantibodies: methodological aspects and clinical significance in systemic vasculitis. Autoimmun Rev. 2013;12:487–95.

    Article  PubMed  CAS  Google Scholar 

  71. McAdoo SP, Hall A, Levy J, Salama AD, Pusey CD. Proteinase-3 antineutrophil cytoplasm antibody positivity in patients without primary systemic vasculitis. J Clin Rheumatol. 2012;18:336–40.

    Article  PubMed  Google Scholar 

  72. Mehra S, Walker J, Patterson K, Fritzler MJ. Autoantibodies in systemic sclerosis. Autoimmun Rev. 2013;12:340–54.

    Article  PubMed  CAS  Google Scholar 

  73. Artenjak A, Lakota K, Frank M, Čučnik S, Rozman B, Božič B, Shoenfeld Y, Sodin-Semrl S. Antiphospholipid antibodies as non-traditional risk factors in atherosclerosis based cardiovascular diseases without overt autoimmunity. A critical updated review. Autoimmun Rev. 2012;11:873–82.

    Article  PubMed  CAS  Google Scholar 

  74. Tobón GJ, Pers JO, Cañas CA, Rojas-Villarraga A, Youinou P, Anaya JM. Are autoimmune diseases predictable? Autoimmun Rev. 2012;11:259–66.

    Article  PubMed  Google Scholar 

  75. Kivity S, Agmon-Levin N, Blank M, Shoenfeld Y. Infections and autoimmunity–friends or foes? Trends Immunol. 2009;30:409–14.

    Article  PubMed  CAS  Google Scholar 

  76. Bogdanos DP, Smyk DS, Invernizzi P, Rigopoulou EI, Blank M, Pouria S, Shoenfeld Y. Infectome: a platform to trace infectious triggers of autoimmunity. Autoimmun Rev. 2012. doi:10.1016/j.autrev.2012.12.005.

  77. Harley JB, Harley IT, Guthridge JM, James JA. The curiously suspicious: a role for Epstein-Barr virus in lupus. Lupus. 2006;15:768–77.

    Article  PubMed  CAS  Google Scholar 

  78. Lunardi C, Tinazzi E, Bason C, Dolcino M, Corrocher R, Puccetti A. Human parvovirus B19 infection and autoimmunity. Autoimmun Rev. 2008;8:116–20.

    Article  PubMed  CAS  Google Scholar 

  79. Ghabaee M, Ghanbarian D, Brujeni GN, Bokaei S, Siavoshi F, Gharibzadeh S. Could Helicobacter pylori play an important role in axonal type of Guillain-Barré syndrome pathogenesis? Clin Neurol Neurosurg. 2010;112:193–8.

    Article  PubMed  Google Scholar 

  80. Zhao X, Bu DX, Hayfron K, Pinkerton KE, Bevins CL, Lichtman A, Wiedeman J. A combination of secondhand cigarette smoke and Chlamydia pneumoniae accelerates atherosclerosis. Atherosclerosis. 2012;222:59–66.

    Article  PubMed  CAS  Google Scholar 

  81. Ercolini AM, Miller SD. The role of infections in autoimmune disease. Clin Exp Immunol. 2009;155:1–15.

    Article  PubMed  CAS  Google Scholar 

  82. Shapira Y, Agmon-Levin N, Shoenfeld Y. Geoepidemiology of autoimmune rheumatic diseases. Nat Rev Rheumatol. 2010;6:468–76.

    Article  PubMed  CAS  Google Scholar 

  83. Amital H, Govoni M, Maya R, Meroni PL, Ori B, Shoenfeld Y, Tincani A, Trotta F, Sarzi-Puttini P, Atzeni F. Role of infectious agents in systemic rheumatic diseases. Clin Exp Rheumatol. 2008;26:S27–32.

    PubMed  CAS  Google Scholar 

  84. Detert J, Pischon N, Burmester GR, Buttgereit F. The association between rheumatoid arthritis and periodontal disease. Arthritis Res Ther. 2010;12:218.

    Article  PubMed  Google Scholar 

  85. Marchant C, Smith MD, Proudman S, Haynes DR, Bartold PM. Effect of porphyromonas gingivalis on citrullination of proteins by macrophages in vitro. J Periodontol. 2012. doi:10.1902/jop.2012.120103.

  86. Barragán-Martínez C, Speck-Hernández CA, Montoya-Ortiz G, Mantilla RD, Anaya JM, Rojas-Villarraga A. Organic solvents as risk factor for autoimmune diseases: a systematic review and meta-analysis. PLoS ONE. 2012;7:51506.

    Article  CAS  Google Scholar 

  87. Newell GR, Stevens DA. Epstein-Barr virus antibody in systemic lupus erythematosus. Lancet. 1971;1:652.

    Article  PubMed  CAS  Google Scholar 

  88. Shapira Y, Poratkatz BS, Gilburd B, Barzilai O, Ram M, Blank M, Lindeberg S, Frostegård J, Anaya JM, Bizzaro N, Jara LJ, Damoiseaux J, Shoenfeld Y, Levin NA. Geographical differences in autoantibodies and anti-infectious agents antibodies among healthy adults. Clin Rev Allergy Immunol. 2012;42:154–63.

    Article  PubMed  CAS  Google Scholar 

  89. Poole BD, Templeton AK, Guthridge JM, Brown EJ, Harley JB, James JA. Aberrant Epstein-Barr viral infection in systemic lupus erythematosus. Autoimmun Rev. 2009;8:337–42.

    Article  PubMed  CAS  Google Scholar 

  90. Niller HH, Wolf H, Minarovits J. Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases. Autoimmunity. 2008;41:298–328.

    Article  PubMed  CAS  Google Scholar 

  91. Marrie RA. When one and one make three: HLA and EBV infection in MS. Neurology. 2008;70:1067–8.

    Article  PubMed  Google Scholar 

  92. Desailloud R, Hober D. Viruses and thyroiditis: an update. Virol J. 2009;12:5.

    Article  CAS  Google Scholar 

  93. Lucas RM, Hughes AM, Lay ML, Ponsonby AL, Dwyer DE, Taylor BV, Pender MP. Epstein-Barr virus and multiple sclerosis. J Neurol Neurosurg Psychiatry. 2011;82:1142–8.

    Article  PubMed  CAS  Google Scholar 

  94. Zandman-Goddard G, Berkun Y, Barzilai O, Boaz M, Blank M, Ram M, Sherer Y, Anaya JM, Shoenfeld Y. Exposure to Epstein-Barr virus infection is associated with mild systemic lupus erythematosus disease. Ann NY Acad Sci. 2009;1173:658–63.

    Article  PubMed  CAS  Google Scholar 

  95. Fukuda MV, Lo SC, de Almeida CS, Shinjo SK. Anti-Ro antibody and cutaneous vasculitis in systemic lupus erythematosus. Clin Rheumatol. 2009;28:301–4.

    Article  PubMed  Google Scholar 

  96. Poole BD, Gross T, Maier S, Harley JB, James JA. Lupus-like autoantibody development in rabbits and mice after immunization with EBNA-1 fragments. J Autoimmun. 2008;31:362–71.

    Article  PubMed  CAS  Google Scholar 

  97. Pender MP. Preventing and curing multiple sclerosis by controlling Epstein-Barr virus infection. Autoimmun Rev. 2009;8:563–8.

    Article  PubMed  CAS  Google Scholar 

  98. Agmon-Levin N, Ram O, Barzilai M, Porat-Katz S, Parikman R, Selmi C, Gershwin ME, Anaya JM, Youinou P, Bizzaro N, Tincani A, Tzioufas AG, Cervera R, Stojanovich L, Martin J, Gonzalez-Gay MA, Valentini G, Blank M, SanMarco M, Rozman B, Bombardieri S, De Vita S, Shoenfeld Y. Prevalence of hepatitis C serum antibody in autoimmune diseases. Autoimmun. 2009;32:261–6.

    Article  CAS  Google Scholar 

  99. Lyons PA, Rayner TF, Trivedi S, Holle JU, Watts RA, Jayne DR, Baslund B, Brenchley P, Bruchfeld A, Chaudhry AN, Cohen Tervaert JW, Deloukas P, Feighery C, Gross WL, Guillevin L, Gunnarsson I, Harper L, Hrušková Z, Little MA, Martorana D, Neumann T, Ohlsson S, Padmanabhan S, Pusey CD, Salama AD, Sanders JS, Savage CO, Segelmark M, Stegeman CA, Tesař V, Vaglio A, Wieczorek S, Wilde B, Zwerina J, Rees AJ, Clayton DG, Smith KG. Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med. 2012;367:214–23.

    Article  PubMed  CAS  Google Scholar 

  100. Weidensaul D, Imam T, Holyst MM, King PD, McMurray RW. Polymyositis, pulmonary fibrosis, and hepatitis C. Arthritis Rheum. 1995;38:437–9.

    Article  PubMed  CAS  Google Scholar 

  101. Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, Feng P, Soppet D, Charters M, Gentz R, Parmelee D, Li Y, Galperina O, Giri J, Roschke V, Nardelli B, Carrell J, Sosnovtseva S, Greenfield W, Ruben SM, Olsen HS, Fikes J, Hilbert DM. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science. 1999;285:260.

    Article  PubMed  CAS  Google Scholar 

  102. Toubi E, Gordon S, Kessel A, Rosner I, Rozenbaum M, Shoenfeld Y, Zuckerman E. Elevated serum B-Lymphocyte activating factor (BAFF) in chronic hepatitis C virus infection: association with autoimmunity. J Autoimmun. 2006;27:134–9.

    Article  PubMed  CAS  Google Scholar 

  103. Cacoub P, Renou C, Kerr G, Hüe S, Rosenthal E, Cohen P, Kaplanski G, Charlotte F, Thibault V, Ghillani P, Piette JC, Caillat-Zucman S. Influence of HLA-DR phenotype on the risk of hepatitis C virus-associated mixed cryoglobulinemia. Arthritis Rheum. 2011;44:2118–24.

    Article  Google Scholar 

  104. García-Carrasco M, Ramos-Casals M, Cervera R, Font J, Vidal J, Muñoz FJ, Miret C, Espinosa G, Ingelmo M. Hepatitis C virus infection in “primary” Sjögren’s syndrome: prevalence and clinical significance in a series of 90 patients. Ann Rheum Dis. 1997;56:173–5.

    Article  PubMed  Google Scholar 

  105. Ramos-Casals M, García-Carrasco M, Cervera R, Rosas J, Trejo O, de la Red G, Sánchez-Tapias JM, Font J, Ingelmo M. Hepatitis C virus infection mimicking primary Sjögren’s syndrome. Clinical and immunologic description of 35 cases. Medicine (Baltimore). 2001;80:1–8.

    Article  CAS  Google Scholar 

  106. Ramos-Casals M, Font J, García-Carrasco M, Cervera R, Jiménez S, Trejo O, de la Red G, Sánchez-Tapias JM, Ingelmo M. Hepatitis C virus infection mimicking systemic lupus erythematosus. Study of hepatitis C virus infection in a series of 134 Spanish patients with systemic lupus erythematosus. Arthritis Rheum. 2000;43:2801–6.

    Article  PubMed  CAS  Google Scholar 

  107. Rinaldi M, Perricone R, Blank M, Perricone C, Shoenfeld Y. Anti-Saccharomyces cerevisiae autoantibodies in autoimmune diseases: from bread baking to autoimmunity. Clin Rev Allergy Immunol. 2013. doi:10.1007/s12016-012-8344-9.

  108. Sicard D, Legras JL. Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex. C R Biol. 2011;334:229–36.

    Article  PubMed  Google Scholar 

  109. Gologan S, Iacob R, Preda C, Vadan R, Cotruta B, Catuneanu AM, Iacob S, Constantinescu I, Gheorghe L, Iobagiu S, Gheorghe C, Diculescu M. Higher titers of anti-Saccharomyces cerevisiae antibodies IgA and IgG are associated with more aggressive phenotypes in Romanian patients with Crohn’s disease. J Gastrointestin Liver Dis. 2012;21:39–44.

    PubMed  Google Scholar 

  110. Krause I, Blank M, Cervera R, Font J, Matthias T, Pfeiffer S, Wies I, Fraser A, Shoenfeld Y. Cross-reactive epitopes on β2-glycoprotein-I and saccharomyces cerevisiae in patients with the antiphospholipid syndrome. Ann N Y Acad Sci. 2007;1108:481–8.

    Article  PubMed  CAS  Google Scholar 

  111. Dai H, Li Z, Zhang Y, Lv P, Gao XM. Elevated levels of serum antibodies against Saccharomyces cerevisiae mannan in patients with systemic lupus erythematosus. Lupus. 2009;18:1087–90.

    Article  PubMed  CAS  Google Scholar 

  112. Sakly W, Mankaï A, Sakly N, Thabet Y, Achour A, Ghedira-Besbes L, Jeddi M, Ghedira I. Anti-Saccharomyces cerevisiae antibodies are frequent in type 1 diabetes. Endocr Pathol. 2010;21:108–14.

    Article  PubMed  CAS  Google Scholar 

  113. Dai H, Li Z, Zhang Y, Lv P, Gao XM. Elevated levels of serum IgA against Saccharomyces cerevisiae mannan in patients with rheumatoid arthritis. Cell Mol Immunol. 2009;6:361–6.

    Article  PubMed  CAS  Google Scholar 

  114. Cinemre H, Bilir C, Gokosmanoglu F, Kadakal F. Anti-Saccharomyces cerevisiae antibodies in acute myocardial infarction. J Investig Med. 2007;55:444–9.

    Article  PubMed  CAS  Google Scholar 

  115. Marrakchi R, Bougatef K, Moussa A, Ouerhani S, Khodjet-el-Khil H, Messai Y, Mestiri O, Najar T, Benammar-Elgaaeid A. 3020insC insertion in NOD2/CARD15 gene, a prevalent variant associated with anti-Saccharomyces cerevisiae antibodies and ileal location of Crohn’s disease in Tunisian population. Inflamm Res. 2009;58:218–23.

    Article  PubMed  CAS  Google Scholar 

  116. Takedatsu H, Taylor KD, Mei L, McGovern DP, Landers CJ, Gonsky R, Cong Y, Vasiliauskas EA, Ippoliti A, Elson CO, Rotter JI, Targan SR. Linkage of Crohn’s disease-related serological phenotypes: NFKB1 haplotypes are associated with anti-CBir1 and ASCA, and show reduced NF-kappaB activation. Gut. 2009;58:60–7.

    Article  PubMed  CAS  Google Scholar 

  117. Seibold S. ASCA: genetic marker, predictor of disease, or marker of a response to an environmental antigen? Gut. 2005;54:1212–3.

    Article  PubMed  CAS  Google Scholar 

  118. Israeli E, Grotto I, Gilburd B, Balicer RD, Goldin E, Wiik A, Shoenfeld Y. Anti-Saccharomyces cerevisiae mannan antibodies (ASCA) in CD. Perinuclear anti-neutrophil cytoplasm antibodies (pANCA) in UC. The presence of these antibodies before the clinical diagnosis? Anti-Saccharomyces cerevisiae and ANCA as predictors of inflammatory bowel disease. Gut. 2005;54:1232–6.

    Article  PubMed  CAS  Google Scholar 

  119. Cruz-Tapias P, Pérez-Fernández OM, Rojas-Villarraga A, Rodríguez-Rodríguez A, Arango MT, Anaya JM. Shared HLA class II in six autoimmune diseases in latin America: A meta-analysis. Autoimmune Dis. 2012;2012:569728.

    PubMed  Google Scholar 

  120. Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA, Sun X, Ortmann W, Kosoy R, Ferreira RC, Nordmark G, Gunnarsson I, Svenungsson E, Padyukov L, Sturfelt G, Jönsen A, Bengtsson AA, Rantapää-Dahlqvist S, Baechler EC, Brown EE, Alarcón GS, Edberg JC, Ramsey-Goldman R, McGwin G Jr, Reveille JD, Vilá LM, Kimberly RP, Manzi S, Petri MA, Lee A, Gregersen PK, Seldin MF, Rönnblom L, Criswell LA, Syvänen AC, Behrens TW, Graham RR. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet. 2009;41:1228–33.

    Article  PubMed  CAS  Google Scholar 

  121. Chung SA, Taylor KE, Graham RR, Nititham J, Lee AT, Ortmann WA, Jacob CO, Alarcón-Riquelme ME, Tsao BP, Harley JB, Gaffney PM, Moser KL, SLEGEN, Petri M, Demirci FY, Kamboh MI, Manzi S, Gregersen PK, Langefeld CD, Behrens TW, Criswell LA. Differential genetic associations for systemic lupus erythematosus based on anti-dsDNA autoantibody production. PLoS Genet. 2011;7:e1001323.

    Article  PubMed  CAS  Google Scholar 

  122. Wu CS, Hu CY, Hsu PN. Anti-SSB/La antibody is negatively associated with HLA-DR2 in chronic hepatitis C infection. Clin Rheumatol. 2008;27:365–8.

    Article  PubMed  Google Scholar 

  123. Rojas-Villarraga A, Diaz FJ, Calvo-Páramo E, Salazar JC, Iglesias-Gamarra A, Mantilla RD, Anaya JM. Familial disease, the HLA-DRB1 shared epitope and anti-CCP antibodies influence time at appearance of substantial joint damage in rheumatoid arthritis. J Autoimmun. 2009;32:64–9.

    Article  PubMed  CAS  Google Scholar 

  124. Willemze A, van der Woude D, Ghidey W, Levarht EW, Stoeken-Rijsbergen G, Verduyn W, de Vries RR, Houwing-Duistermaat JJ, Huizinga TW, Trouw LA, Toes RE. The interaction between HLA shared epitope alleles and smoking and its contribution to autoimmunity against several citrullinated antigens. Arthritis Rheum. 2011;63:1823–32.

    Article  PubMed  CAS  Google Scholar 

  125. Djilali-Saiah I, Fakhfakh A, Louafi H, Caillat-Zucman S, Debray D, Alvarez F. HLA class II influences humoral autoimmunity in patients with type 2 autoimmune hepatitis. J Hepatol. 2006;45:844–50.

    Article  PubMed  CAS  Google Scholar 

  126. Kanga U, Tandon N, Marwaha RK, Khanna R, Bhattacharya B, Singh S, Kumar N, Mehra NK. Immunogenetic association and thyroid autoantibodies in juvenile autoimmune thyroiditis in North India. Clin Endocrinol (Oxf). 2006;64:573–9.

    Article  PubMed  CAS  Google Scholar 

  127. Barker JM, Ide A, Hostetler C, Yu L, Miao D, Fain PR, Eisenbarth GS, Gottlieb PA. Endocrine and immunogenetic testing in individuals with type 1 diabetes and 21-hydroxylase autoantibodies: addison’s disease in a high-risk population. J Clin Endocrinol Metab. 2005;90:128–34.

    Article  PubMed  CAS  Google Scholar 

  128. Zhu F, Sun Y, Wang M, Ma S, Chen X, Cao A, Chen F, Qiu Y, Liao Y. Correlation between HLA-DRB1, HLA-DQB1 polymorphism and autoantibodies against angiotensin AT(1) receptors in Chinese patients with essential hypertension. Clin Cardiol. 2011;34:302–8.

    Article  PubMed  Google Scholar 

  129. Flach TL, Ng G, Hari A, Desrosiers MD, Zhang P, Ward SM, Seamone ME, Vilaysane A, Mucsi AD, Fong Y, Prenner E, Ling CC, Tschopp J, Muruve DA, Amrein MW, Shi Y. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat Med. 2011;17:479–87.

    Article  PubMed  CAS  Google Scholar 

  130. Shoenfeld Y, Agmon-Levin N. ‘ASIA’—autoimmune/inflammatory syndrome induced by adjuvants. J Autoimmun. 2011;36:4–8.

    Article  PubMed  CAS  Google Scholar 

  131. Perricone C, Alessandri C, Valesini G. ‘ASIA’—Autoimmune/inflammatory syndrome induced by adjuvants: even and odd. Reumatismo. 2011;63:63–6.

    PubMed  CAS  Google Scholar 

  132. Daha NA, Toes RE. Rheumatoid arthritis: Are ACPA-positive and ACPA-negative RA the same disease? Nat Rev Rheumatol. 2011;7:202–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehuda Shoenfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perricone, C., Agmon-Levin, N., Ceccarelli, F. et al. Genetics and autoantibodies. Immunol Res 56, 206–219 (2013). https://doi.org/10.1007/s12026-013-8396-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-013-8396-9

Keywords

Navigation