Skip to main content

Advertisement

Log in

Auto-antibodies as Emergent Prognostic Markers and Possible Mediators of Ischemic Cardiovascular Diseases

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

During the last 15 years, a growing body of evidence supported the fact that auto-antibodies represent not only emergent markers but also active mediators of cardiovascular disease (CVD), clinically represented mostly by acute coronary syndrome (ACS) and stroke. There is a contrasted relationship between auto-antibodies and CVD, some being protective, while others acting as potential risk factors. Therefore, we performed a review of the literature on the respective cardiovascular prognostic value of the most relevant auto-antibodies in ACS and stroke, and their putative pathophysiological properties in atherogenesis. This review highlights auto-antibodies as active modulators of the innate immune system in atherogenesis (either toward a pro- or anti-inflammatory response), or by affecting basal heart rate regulation (anti-apoA-1 IgG). Given their apparent prognostic independency towards traditional cardiovascular risk factors, the data available in the literature indicates that some of those auto-antibodies could be of valuable help for cardiovascular risk stratification in the future, especially because their deleterious effects have been shown to be potentially abrogated in vivo and in vitro by existing therapeutic modalities. Although evidence in humans is currently lacking, these studies may open innovative therapeutic perspectives for CVD in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eyre H, Kahn R, Robertson RM et al (2004) Preventing cancer, cardiovascular disease, and diabetes: a common agenda for the American Cancer Society, the American Diabetes Association, and the American Heart Association. Circulation 109(25):3244–3255

    Article  PubMed  Google Scholar 

  2. Yan ZQ, Hansson GK (2007) Innate immunity, macrophage activation, and atherosclerosis. Immunol Rev 219:187–203

    Article  CAS  PubMed  Google Scholar 

  3. Packard RR, Libby P (2008) Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem 54(1):24–38

    Article  CAS  PubMed  Google Scholar 

  4. Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6(7):508–519

    Article  CAS  PubMed  Google Scholar 

  5. Binder CJ, Chang MK, Shaw PX et al (2002) Innate and acquired immunity in atherogenesis. Nat Med 8(11):1218–1226

    Article  CAS  PubMed  Google Scholar 

  6. Hansson GK, Nilsson J (2008) Introduction: atherosclerosis as inflammation: a controversial concept becomes accepted. J Intern Med 263(5):462–463

    Article  CAS  PubMed  Google Scholar 

  7. Pereira IA, Borba EF (2008) The role of Inflammation, humoral and cell mediated autoimmunity in the pathogenesis of atherosclerosis. Swiss Med Wkly 138(37–38):534–539

    CAS  PubMed  Google Scholar 

  8. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340(2):115–126

    Article  CAS  PubMed  Google Scholar 

  9. Schwartz SM, Galis ZS, Rosenfeld ME, Falk E (2007) Plaque rupture in humans and mice. Arterioscler Thromb Vasc Biol 27(4):705–713

    Article  CAS  PubMed  Google Scholar 

  10. Johnson JL, George SJ, Newby AC, Jackson CL (2005) Divergent effects of matrix metalloproteinases 3, 7, 9, and 12 on atherosclerotic plaque stability in mouse brachiocephalic arteries. Proc Natl Acad Sci USA 102(43):15575–15580

    Article  CAS  PubMed  Google Scholar 

  11. Samnegard A, Silveira A, Tornvall P, Hamsten A, Ericsson CG, Eriksson P (2006) Lower serum concentration of matrix metalloproteinase-3 in the acute stage of myocardial infarction. J Intern Med 259(5):530–536

    Article  CAS  PubMed  Google Scholar 

  12. Samnegard A, Silveira A, Lundman P et al (2005) Serum matrix metalloproteinase-3 concentration is influenced by MMP-3–1612 5A/6A promoter genotype and associated with myocardial infarction. J Intern Med 258(5):411–419

    Article  CAS  PubMed  Google Scholar 

  13. Steffel J, Lüscher TF, Tanner FC (2006) Tissue factor in cardiovascular diseases: molecular mechanisms and clinical implications. Circulation 113(5):722–731

    Article  CAS  PubMed  Google Scholar 

  14. Manzi S, Meilahn EN, Rairie JE et al (1997) Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham Study. Am J Epidemiol 145(5):408–415

    Article  CAS  PubMed  Google Scholar 

  15. Haque S, Mirjafari H, Bruce IN (2008) Atherosclerosis in rheumatoid arthritis and systemic lupus erythematosus. Curr Opin Lipidol 19(4):338–343

    Article  CAS  PubMed  Google Scholar 

  16. Salmon JE, Roman MJ (2008) Subclinical atherosclerosis in rheumatoid arthritis and systemic lupus erythematosus. Am J Med 121(10 Suppl 1):S3–S8

    Article  PubMed  Google Scholar 

  17. Marai I, Shechter M, Langevitz P et al (2008) Anti-cardiolipin antibodies and endothelial function in patients with coronary artery disease. Am J Cardiol 101(8):1094–1097

    Article  CAS  PubMed  Google Scholar 

  18. Galli M, Luciani D, Bertolini G, Barbui T (2003) Lupus anticoagulants are stronger risk factors for thrombosis than anticardiolipin antibodies in the antiphospholipid syndrome: a systematic review of the literature. Blood 101:1827–1832

    Article  CAS  PubMed  Google Scholar 

  19. Iverson GM, Matsuura E, Victoria EJ, Cockerill KA, Linnik MD (2002) The orientation of beta2GPI on the plate is important for the binding of anti-beta2GPI auto-antibodies by ELISA. J Autoimmun 18(4):289–297

    Article  PubMed  Google Scholar 

  20. Matsuura E, Kobayashi K, Matsunami Y et al (2009) Autoimmunity, infectious immunity, and atherosclerosis. J Clin Immunol 29:714–721

    Article  CAS  PubMed  Google Scholar 

  21. Greco TP, Conti-Kelly AM, Greco T Jr et al (2009) Newer antiphospholipid antibodies predict adverse outcomes in patients with acute coronary syndrome. Am J Clin Pathol 132(4):613–620

    Article  CAS  PubMed  Google Scholar 

  22. Meroni PL, Peyvandi F, Foco L et al (2007) Anti-beta 2 glycoprotein I antibodies and the risk of myocardial infarction in young premenopausal women. J Thromb Haemost 5(12):2421–2428

    Article  CAS  PubMed  Google Scholar 

  23. Urbanus RT, Siegerink B, Roest M, Rosendaal FR, de Groot PG, Algra A (2009) Antiphospholipid antibodies and risk of myocardial infarction and ischaemic stroke in young women in the RATIO study: a case-control study. Lancet Neurol 8(11):998–1005

    Article  CAS  PubMed  Google Scholar 

  24. Brey RL, Stallworth CL, McGlasson DL et al (2002) Antiphospholipid antibodies and stroke in young women. Stroke 33(10):2396–2400

    Article  CAS  PubMed  Google Scholar 

  25. Tuhrim S, Rand JH, Wu XX et al (1999) Elevated anticardiolipin antibody titer is a strong risk factor in a multiethnic population independent of isotype or degree of positivity. Stroke 30:1561–1565

    Article  CAS  PubMed  Google Scholar 

  26. Vaarala O, Manttari M, Manninen V et al (1995) Anticardiolipin antibodies and risk of myocardial infarction in a prospective cohort of middle-aged men. Circulation 91:23–27

    Article  CAS  PubMed  Google Scholar 

  27. Zuckerman E, Toubi E, Shiran A et al (1996) Anticardiolipin antibodies and acute myocardial infarction in non-systemic lupus erythematosus patients: a controlled prospective study. Am J Med 171:381–386

    Article  Google Scholar 

  28. Levine SR, Salowich-Palm L, Sawaya KL et al (1997) IgG anticardiolipin antibody titer and the risk of subsequent thrombo-occlusive events and death. A prospective cohort study. Stroke 28:1660–1666

    Article  CAS  PubMed  Google Scholar 

  29. Tsutsumi A, Matsuura E, Ichikawa K et al (1996) Antibodies to β2-glycoprotein I and clinical manifestations in patients with systemic lupus erythematosus. Arthritis Rheum 39:1466–1474

    Article  CAS  PubMed  Google Scholar 

  30. Lopez LR, Dier KJ, Lopez D, Merrill JT, Fink CA (2009) Anti-β2- glycoprotein I and antiphosphatidylserine antibodies are predictors of arterial thrombosis in patients with antiphospholipid syndrome. J Clin Immunol 29:714–721

    Article  PubMed  CAS  Google Scholar 

  31. de Laat B, Wu XX, van Lummel M, Derksen RH, de Groot PG, Rand JH (2007) Correlation between antiphospholipid antibodies that recognize domain I of beta2-glycoprotein I and a reduction in the anticoagulant activity of annexin A5. Blood 109(4):1490–1494

    Article  PubMed  CAS  Google Scholar 

  32. de Laat B, Pengo V, Pabinger I, Musial J et al (2009) The association between circulating antibodies against domain I of beta2-glycoprotein I and thrombosis: an international multicenter study. J Thromb Haemost 7(11):1767–1773

    Article  PubMed  Google Scholar 

  33. Iverson GM, von Mühlen CA, Staub HL, Lassen AJ, Binder W, Norman GL (2006) Patients with atherosclerotic syndrome, negative in anti-cardiolipin assays, make IgA auto-antibodies that preferentially target domain four of beta2-GPI. J Autoimmun 27(4):266–271

    Article  CAS  PubMed  Google Scholar 

  34. Ranzolin A, Bohn JM, Norman GL et al (2004) Anti-beta2-glycoprotein I antibodies as risk factors for acute myocardial infarction. Arq Bras Cardiol 83(2):137–144

    Article  CAS  Google Scholar 

  35. Veres K, Lakos G, Kerenyi A et al (2004) Antiphospholipid antibodies in acute coronary syndrome. Lupus 13(6):423–427

    Article  CAS  PubMed  Google Scholar 

  36. Blank M, Shoenfeld Y, Cabilly S, Heldman Y, Fridkin M, Katchalski-Katsier E (1999) Prevention of experimental antiphospholipid syndrome and endothelial cell activation by synthetic peptides. Proc Natl Acad Sci USA 96:5164–5168

    Article  CAS  PubMed  Google Scholar 

  37. Koike T, Ichikawa K, Atsumi H, Kasahara T, Matsuura E (2000) B2-glycoprotein I anti-B2-glycoprotein I interactions. J Autoimmun 15:97–100

    Article  CAS  PubMed  Google Scholar 

  38. Yang CD, Chen SL, Shen N et al (1997) The fifth domain of B2-glycoprotein I contains antigenic epitopes recognized by anticardiolipin antibodies derived from patients with the antiphospholipid syndrome. APLAR J Rheumatol 1:96–100

    Google Scholar 

  39. Greco TP, Conti-Kelly AM, Anthony JR et al (2010) Oxidized-LDL/beta(2)-glycoprotein I complexes are associated with disease severity and increased risk for adverse outcomes in patients with acute coronary syndromes. Am J Clin Pathol 133(5):737–743

    Article  CAS  PubMed  Google Scholar 

  40. de Groot PG, Derksen RH, de Laat B (2008) Twenty-two years of failure to set up undisputed assays to detect patients with the antiphospholipid syndrome. Semin Thromb Hemost 34(4):347–355

    Article  PubMed  CAS  Google Scholar 

  41. Favaloro EJ, Wong RC (2008) Laboratory testing and identification of antiphospholipid antibodies and the antiphospholipid syndrome: a potpourri of problems, a compilation of possible solutions. Semin Thromb Hemost 34(4):389–410

    Article  CAS  PubMed  Google Scholar 

  42. Devreese K, Hoylaerts MF (2010) Challenges in the diagnosis of the antiphospholipid syndrome. Clin Chem 56(6):930–940

    Article  CAS  PubMed  Google Scholar 

  43. Cugno M, Borghi MO, Lonati LM et al (2010) Patients with antiphospholipid syndrome display endothelial perturbation. J Autoimmun 34(2):105–110

    Article  CAS  PubMed  Google Scholar 

  44. Simoncini S, Sapet C, Camoin-Jau L et al (2005) Role of reactive oxygen species and p38 MAPK in the induction of the pro-adhesive endothelial state mediated by IgG from patients with anti-phospholipid syndrome. Int Immunol 17(4):489–500

    Article  CAS  PubMed  Google Scholar 

  45. Alves JD, Clapp BR, Stidwill R et al (2006) Human monoclonal IgG anticardiolipin antibodies induce nitric oxide synthase expression. Atherosclerosis 185(2):246–253

    Article  CAS  PubMed  Google Scholar 

  46. Sitia S, Tomasoni L, Atzeni F et al (2010) From endothelial dysfunction to atherosclerosis. Autoimmun Rev 9(12):830–834

    Article  CAS  PubMed  Google Scholar 

  47. Raschi E, Borghi MO, Grossi C, Broggini V, Pierangeli S, Meroni PL (2008) Toll-like receptors: another player in the pathogenesis of the anti-phospholipid syndrome. Lupus 17(10):937–942

    Article  CAS  PubMed  Google Scholar 

  48. Satta N, Dunoyer-Geindre S, Reber G et al (2007) The role of TLR2 in the inflammatory activation of mouse fibroblasts by human antiphospholipid antibodies. Blood 109(4):1507–1514

    Article  CAS  PubMed  Google Scholar 

  49. Dunoyer-Geindre S, Kwak BR, Pelli G et al (2007) Immunization of LDL receptor-deficient mice with beta2-glycoprotein one or human serum albumin induces a more inflammatory phenotype in atherosclerotic plaques. Thromb Haemost 97(1):129–138

    CAS  PubMed  Google Scholar 

  50. Cederholm A, Svenungsson E, Jensen-Urstad K et al (2005) Decreased binding of annexin v to endothelial cells: a potential mechanism in atherothrombosis of patients with systemic lupus erythematosus. Arterioscler Thromb Vasc Biol 25(1):198–203

    CAS  PubMed  Google Scholar 

  51. Rand JH, Wu XX, Quinn AS, Taatjes DJ (2008) Resistance to annexin A5 anticoagulant activity: a thrombogenic mechanism for the antiphospholipid syndrome. Lupus 17(10):922–930

    Article  CAS  PubMed  Google Scholar 

  52. Frostegård AG, Su J, von Landenberg P, Frostegård J (2010) Effects of anti-cardiolipin antibodies and IVIg on annexin A5 binding to endothelial cells: implications for cardiovascular disease. Scand J Rheumatol 39(1):77–83

    Article  PubMed  CAS  Google Scholar 

  53. Hasunuma Y, Matsuura E, Makita Z, Katahira T, Nishi S, Koike T (1997) Involvement of β2-glycoprotein I and anticardiolipin antibodies in oxidatively modified low-density lipoprotein uptake by macrophages. Clin Exp Immunol 107:569–573

    Article  CAS  PubMed  Google Scholar 

  54. Kobayashi K, Matsuura E, Liu Q et al (2001) A specific ligand for β2-glycoprotein I mediates autoantibody-dependent uptake of oxidized low density lipoprotein by macrophages. J Lipid Res 42:697–709

    CAS  PubMed  Google Scholar 

  55. Kuwana M, Matsuura E, Kobayashi K et al (2005) Binding of β2-glycoprotein I to anionic phospholipids facilitates processing and presentation of a cryptic epitope that activates pathogenic autoreactive T cells. Blood 105:1552–1557

    Article  CAS  PubMed  Google Scholar 

  56. Yamaguchi Y, Seta N, Kaburaki J, Kobayashi K, Matsuura E, Kuwana M (2007) Excessive exposure to anionic surfaces maintains autoantibody response to β2-glycoprotein I in patients with antiphospholipid syndrome. Blood 110:4312–4318

    Article  CAS  PubMed  Google Scholar 

  57. Kajiwara T, Yasuda T, Matsuura E (2007) Intracellular trafficking of β2- glycoprotein I complexes with lipid vesicles in macrophages: implications on the development of antiphospholipid syndrome. J Autoimmun 29:164–173

    Article  CAS  PubMed  Google Scholar 

  58. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  PubMed  Google Scholar 

  59. Xu Q (2002) Role of heat shock proteins in atherosclerosis. Arterioscler Thromb Vasc Biol 22:1547–1559

    Article  CAS  PubMed  Google Scholar 

  60. Berberian PA, Myers W, Tytell M, Challa V, Bond MG (1990) Immunohistochemical localization of heat shock protein-70 in normal-appearing and atherosclerotic specimens of human arteries. Am J Pathol 136:71–80

    CAS  PubMed  Google Scholar 

  61. Johnson AD, Berberian PA, Tytell M, Bond MG (1995) Differential distribution of 70-kD heat shock protein in atherosclerosis: its potential role in arterial SMC survival. Arterioscler Thromb Vasc Biol 15:27–36

    Article  CAS  PubMed  Google Scholar 

  62. Kleindienst R, Xu Q, Willeit J, Waldenberger FR, Weimann S, Wick G (1993) Immunology of atherosclerosis: demonstration of heat shock protein 60 expression and T lymphocytes bearing alpha/beta or gamma/delta receptor in human atherosclerotic lesions. Am J Pathol 142:1927–1937

    CAS  PubMed  Google Scholar 

  63. Xu Q, Willeit J, Marosi M et al (1993) Association of serum antibodies to heat-shock protein 65 with carotid atherosclerosis. Lancet 341:255–259

    Article  CAS  PubMed  Google Scholar 

  64. Xu Q, Kiechl S, Mayr M et al (1999) Association of serum antibodies to heat-shock protein 65 with carotid atherosclerosis: clinical significance determined in a follow-up study. Circulation 100:1169–1174

    Article  CAS  PubMed  Google Scholar 

  65. Burian K, Kis Z, Virok D et al (2001) Independent and joint effects of antibodies to human heat-shock protein 60 and Chlamydia pneumoniae infection in the development of coronary atherosclerosis. Circulation 103:1503–1508

    Article  CAS  PubMed  Google Scholar 

  66. Zhu J, Quyyumi AA, Rott D et al (2001) Antibodies to human heat-shock protein 60 are associated with the presence and severity of coronary artery disease: evidence for an autoimmune component of atherogenesis. Circulation 103:1071–1075

    Article  CAS  PubMed  Google Scholar 

  67. Huittinen T, Leinonen M, Tenkanen L et al (2002) Autoimmunity to human heat shock protein 60, Chlamydia pneumoniae infection, and inflammation in predicting coronary risk. Arterioscler Thromb Vasc Biol 22:431–437

    Article  CAS  PubMed  Google Scholar 

  68. Zhang X, He MA, Cheng L et al (2008) Joint effects of antibody to heat shock protein 60, hypertension, and diabetes on risk of coronary heart disease in Chinese. Clin Chem 54(6):1046–1052

    Article  CAS  PubMed  Google Scholar 

  69. Hoppichler F, Lechleitner M, Traweger C et al (1996) Changes of serum antibodies to heat-shock protein 65 in coronary heart disease and acute myocardial infarction. Atherosclerosis 126:333–338

    Article  CAS  PubMed  Google Scholar 

  70. Mukherjee M, De Benedictis C, Jewitt D, Kakkar VV (1996) Association of antibodies to heat-shock protein-65 with percutaneous transluminal coronary angioplasty and subsequent restenosis. Thromb Haemost 75:258–260

    CAS  PubMed  Google Scholar 

  71. Birnie DH, Holme ER, McKay IC, Hood S, McColl KE, Hillis WS (1998) Association between antibodies to heat shock protein 65 and coronary atherosclerosis: possible mechanism of action of Helicobacter pylori and other bacterial infections in increasing cardiovascular risk. Eur Heart J 19:387–394

    Article  CAS  PubMed  Google Scholar 

  72. Chan YC, Shukla N, Abdus-Samee M et al (1999) Anti-heat-shock protein 70 kDa antibodies in vascular patients. Eur J Vasc Endovasc Surg 18:381–385

    Article  CAS  PubMed  Google Scholar 

  73. Gromadzka G, Zielinska J, Ryglewicz D, Fiszer U, Czlonkowska A (2001) Elevated levels of anti-heat shock protein antibodies in patients with cerebral ischemia. Cerebrovasc Dis 12:235–239

    Article  CAS  PubMed  Google Scholar 

  74. Frostegard J, Lemne C, Andersson B, van der Zee R, Kiessling R, de Faire U (1997) Association of serum antibodies to heat-shock protein 65 with borderline hypertension. Hypertension 29:40–44

    Article  CAS  PubMed  Google Scholar 

  75. Zhang X, He M, Cheng L et al (2008) Elevated heat shock protein 60 levels are associated with higher risk of coronary heart disease in Chinese. Circulation 118(25):2687–2693

    Article  CAS  PubMed  Google Scholar 

  76. Veres A, Füst G, Smieja M et al (2002) Relationship of anti-60 kDa heat shock protein and anti-cholesterol antibodies to cardiovascular events. Circulation 106(22):2775–2780

    Article  CAS  PubMed  Google Scholar 

  77. Schett G, Xu Q, Amberger A et al (1995) Auto-antibodies against heat shock protein 60 mediate endothelial cytotoxicity. J Clin Invest 96(6):2569–2577

    Article  CAS  PubMed  Google Scholar 

  78. Xu Q, Schett G, Seitz CS, Hu Y, Gupta RS, Wick G (1994) Surface staining and cytotoxic activity of heat-shock protein 60 antibody in stressed aortic endothelial cells. Circ Res 75:1078–1085

    Article  CAS  PubMed  Google Scholar 

  79. Foteinos G, Afzal AR, Mandal K, Jahangiri M, Xu Q (2005) Anti-heat shock protein 60 auto-antibodies induce atherosclerosis in apolipoprotein E-deficient mice via endothelial damage. Circulation 112(8):1206–1213

    Article  CAS  PubMed  Google Scholar 

  80. Yokota S, Minota S, Fujii N (2006) Anti-HSP auto-antibodies enhance HSP-induced pro-inflammatory cytokine production in human monocytic cells via Toll-like receptors. Int Immunol 18(4):573–580

    Article  CAS  PubMed  Google Scholar 

  81. Dieudé M, Gillis MA, Théorêt JF et al (2009) Auto-antibodies to heat shock protein 60 promote thrombus formation in a murine model of arterial thrombosis. J Thromb Haemost 7(4):710–719

    Article  PubMed  CAS  Google Scholar 

  82. Kol A, Sukhova GK, Lichtman AH, Libby P (1998) Chlamydial heat shock protein 60 localizes in human atheroma and regulates macrophage tumor necrosis factor-alpha and matrix metalloproteinase expression. Circulation 98:300–307

    Article  CAS  PubMed  Google Scholar 

  83. Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. J Immunol 164:558–565

    CAS  PubMed  Google Scholar 

  84. Asea A (2003) Chaperokine-induced signal transduction pathways. Exerc Immunol Rev 9:25–33

    PubMed  Google Scholar 

  85. Vabulas RM, Wagner H, Schild H (2002) Heat shock proteins as ligands of Toll-like receptors. Curr Top Microbiol Immunol 270:169–184

    Article  CAS  PubMed  Google Scholar 

  86. Gao B, Tsan MF (2004) Induction of cytokines by heat shock proteins and endotoxin in murine macrophages. Biochem Biophys Res Commun 317:1149–1154

    Article  CAS  PubMed  Google Scholar 

  87. Tsan MF, Gao B (2004) Cytokine function of heat shock proteins. Am J Physiol Cell Physiol 286:739–744

    Article  Google Scholar 

  88. Moohebati M, Bidmeshgi S, Azarpazhooh MR et al (2010) Simvastatin treatment reduces heat shock protein 60, 65, and 70 antibody titers in dyslipidemic patients: a randomized, double-blind, placebo-controlled, cross-over trial. Clin Biochem (n press)

  89. Yancey PG, Bortnick AE, Kellner-Weibel G, Llera-Moya M, Phillips MC, Rothblat GH (2003) Importance of different pathways of cellular cholesterol efflux. Arterioscler Thromb Vasc Biol 23(5):712–719

    Article  CAS  PubMed  Google Scholar 

  90. Tsompanidi EM, Brinkmeier MS, Fotiadou EH, Giakoumi SM, Kypreos KE (2010) HDL biogenesis and functions: role of HDL quality and quantity in atherosclerosis. Atherosclerosis 208(1):3–9

    Article  CAS  PubMed  Google Scholar 

  91. Hyka N, Dayer JM, Modoux C et al (2001) Apolipoprotein A-I inhibits the production of interleukin-1beta and tumor necrosis factor-alpha by blocking contact-mediated activation of monocytes by T lymphocytes. Blood 97(8):2381–2389

    Article  CAS  PubMed  Google Scholar 

  92. James RW, Deakin SP (2004) The importance of high-density lipoproteins for paraoxonase-1 secretion, stability, and activity. Free Radic Biol Med 37(12):1986–1994

    Article  CAS  PubMed  Google Scholar 

  93. Murphy AJ, Woollard KJ, Hoang A et al (2008) High-density lipoprotein reduces the human monocyte inflammatory response. Arterioscler Thromb Vasc Biol 28(11):2071–2077

    Article  CAS  PubMed  Google Scholar 

  94. Abe H, Tsuboi N, Suzuki S et al (2001) Anti-apolipoprotein A-I autoantibody: characterization of monoclonal auto-antibodies from patients with systemic lupus erythematosus. J Rheumatol 28(5):990–995

    CAS  PubMed  Google Scholar 

  95. Dinu AR, Merrill JT, Shen C, Antonov IV, Myones BL, Lahita RG (1998) Frequency of antibodies to the cholesterol transport protein apolipoprotein A1 in patients with SLE. Lupus 7(5):355–360

    Article  CAS  PubMed  Google Scholar 

  96. Vuilleumier N, Reber G, James R et al (2004) Presence of auto-antibodies to apolipoprotein A-1 in patients with acute coronary syndrome further links autoimmunity to cardiovascular disease. J Autoimmun 23(4):353–360

    Article  CAS  PubMed  Google Scholar 

  97. Vuilleumier N, Charbonney E, Fontao L et al (2008) Anti-apolipoprotein A-1 IgG are associated with high oxidised low-density lipoprotein levels in acute coronary syndrome. Clin Sci Lond 115:25–33

    Article  CAS  PubMed  Google Scholar 

  98. O’Neill SG, Giles I, Lambrianides A et al (2010) Antibodies to apolipoprotein A-I, high-density lipoprotein, and C-reactive protein are associated with disease activity in patients with systemic lupus erythematosus. Arthritis Rheum 62(3):845–854

    Article  PubMed  CAS  Google Scholar 

  99. Vuilleumier N, Bratt J, Alizadeh R, Hafstrom I, Jogestrand T, Frostegard J (2010) Anti-apoA-1 IgG and oxidized LDL are raised in rheumatoid arthritis (RA): potential associations with cardiovascular disease and RA disease activity. Scan J Rheumatol 39(6):447–453

    Article  CAS  Google Scholar 

  100. Vuilleumier N, Rossier MF, Pagano S et al (2010) Anti-apolipoprotein A-1 autoantibody of IgG subtype as an independent cardiovascular prognostic marker affecting basal heart rate in myocardial infarction. Eur Heart J 31:815–823

    Article  CAS  PubMed  Google Scholar 

  101. Vuilleumier N, Bas S, Pagano S et al (2010) Anti-apolipoprotein A-1 IgG predicts major cardiovascular events in patients suffering from rheumatoid arthritis. Arthritis Rheum 62(9):2640–2650

    Article  CAS  PubMed  Google Scholar 

  102. Tsompanidi EM, Brinkmeier MS, Fotiadou EH, Giakoumi SM, Kypreos KE (2010) HDL biogenesis and functions: role of HDL quality and quantity in atherosclerosis. Atherosclerosis 20:3–9

    Article  CAS  Google Scholar 

  103. Batuca JR, Ames PR, Isenberg DA, Alves JD (2007) Antibodies toward high-density lipoprotein components inhibit paraoxonase activity in patients with systemic lupus erythematosus. Ann NY Acad Sci 1108:137–146

    Article  CAS  PubMed  Google Scholar 

  104. Clarke R, Armitage J (2002) Antioxidant vitamins and risk of cardiovascular disease. Review of large-scale randomised trials. Cardiovasc Drugs Ther 16(5):411–415

    Article  CAS  PubMed  Google Scholar 

  105. Ames PR, Matsuura E, Batuca JR et al (2010) High-density lipoprotein inversely relates to its specific autoantibody favoring oxidation in thrombotic primary antiphospholipid syndrome. Lupus 19(6):711–716

    Article  CAS  PubMed  Google Scholar 

  106. Navab M, Reddy ST, Van Lenten BJ, Anantharamaiah GM, Fogelman AM (2009) The role of dysfunctional HDL in atherosclerosis. J Lipid Res 50:S145–S149

    Article  PubMed  CAS  Google Scholar 

  107. Witztum JL, Horkko S (1997) The role of oxidized LDL in atherogenesis: immunological response and anti-phospholipid antibodies. Ann NY Acad Sci 811:88–96

    Article  CAS  PubMed  Google Scholar 

  108. Salonen JT, Yla-Herttuala S, Yamamoto R et al (1992) Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet 339:883–887

    Article  CAS  PubMed  Google Scholar 

  109. Shoenfeld Y, Wu R, Dearing LD, Matsuura E (2004) Are anti-oxidized low-density lipoprotein antibodies pathogenic or protective? Circulation 110:2552–2558

    Article  PubMed  Google Scholar 

  110. Erkkila AT, Narvanen O, Lehto S, Uusitupa MI, Yla-Herttuala S (2005) Antibodies against oxidized LDL and cardiolipin and mortality in patients with coronary heart disease. Atherosclerosis 183:157–162

    Article  PubMed  CAS  Google Scholar 

  111. Luoma JS, Kareinen A, Narvanen O et al (2005) Auto-antibodies against oxidized LDL are associated with severe chest pain attacks in patients with coronary heart disease. Free Radic Biol Med 39:1660–1665

    Article  CAS  PubMed  Google Scholar 

  112. Crisby M, Kublickiene K, Henareh L, Agewall S (2009) Circulating levels of auto-antibodies to oxidized low-density lipoprotein and C-reactive protein levels correlate with endothelial function in resistance arteries in men with coronary heart disease. Heart Vessels 24:90–95

    Article  PubMed  Google Scholar 

  113. Sherer Y, Pagnoux C, Chironi G et al (2008) Carotid artery intima-media thickness, heat shock proteins and oxidized LDL auto-antibodies in systemic necrotizing vasculitis. Rheumatol Int 28:1099–1103

    Article  CAS  PubMed  Google Scholar 

  114. Chen HW, Kuo CL, Huang CS, Kuo SJ, Liu CS (2008) Oxidized low-density lipoproteins, auto-antibodies against oxidized low-density lipoproteins and carotid intima media thickness in a clinically healthy population. Cardiology 110:252–259

    Article  CAS  PubMed  Google Scholar 

  115. Brandao SA, Izar MC, Fischer SM et al (2010) Early increase in auto-antibodies against human oxidized low-density lipoprotein in hypertensive patients after blood pressure control. Am J Hypertens 23:208–214

    Article  CAS  PubMed  Google Scholar 

  116. Wilson PW, Ben Yehuda O, McNamara J et al (2006) Auto-antibodies to oxidized LDL and cardiovascular risk: the Framingham Offspring Study. Atherosclerosis 189:364–368

    Article  CAS  PubMed  Google Scholar 

  117. Karvonen J, Paivansalo M, Kesaniemi YA, Horkko S (2003) Immunoglobulin M type of auto-antibodies to oxidized low-density lipoprotein has an inverse relation to carotid artery atherosclerosis. Circulation 108:2107–2112

    Article  CAS  PubMed  Google Scholar 

  118. Tsimikas S, Brilakis ES, Lennon RJ et al (2007) Relationship of IgG and IgM auto-antibodies to oxidized low density lipoprotein with coronary artery disease and cardiovascular events. J Lipid Res 48:425–433

    Article  CAS  PubMed  Google Scholar 

  119. Virella G, Lopes-Virella MF (2008) Atherogenesis and the humoral immune response to modified lipoproteins. Atherosclerosis 200:239–246

    Article  CAS  PubMed  Google Scholar 

  120. Binder CJ, Horkko S, Dewan A et al (2003) Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med 9:736–743

    Article  CAS  PubMed  Google Scholar 

  121. Yamashita T, Freigang S, Eberle C et al (2006) Maternal immunization programs postnatal immune responses and reduces atherosclerosis in offspring. Circ Res 99:e51–e64

    Article  CAS  PubMed  Google Scholar 

  122. Mayr M, Kiechl S, Tsimikas S et al (2006) Oxidized low-density lipoprotein auto-antibodies, chronic infections, and carotid atherosclerosis in a population-based study. J Am Coll Cardiol 47:2436–2443

    Article  CAS  PubMed  Google Scholar 

  123. Fredrikson GN, Hedblad B, Berglund G et al (2007) Association between IgM against an aldehyde-modified peptide in apolipoprotein B-100 and progression of carotid disease. Stroke 38:1495–1500

    Article  CAS  PubMed  Google Scholar 

  124. Su J, Georgiades A, Wu R et al (2006) Antibodies of IgM subclass to phosphorylcholine and oxidized LDL are protective factors for atherosclerosis in patients with hypertension. Atherosclerosis 188:160–166

    Article  CAS  PubMed  Google Scholar 

  125. de Faire U, Su J, Hua X et al (2010) Low levels of IgM antibodies to phosphorylcholine predict cardiovascular disease in 60-year old men: effects on uptake of oxidized LDL in macrophages as a potential mechanism. J Autoimmun 34:73–79

    Article  PubMed  CAS  Google Scholar 

  126. Sjoberg BG, Su J, Dahlbom I et al (2009) Low levels of IgM antibodies against phosphorylcholine-A potential risk marker for ischemic stroke in men. Atherosclerosis 203:528–532

    Article  PubMed  CAS  Google Scholar 

  127. Fiskesund R, Stegmayr B, Hallmans G et al (2010) Low levels of antibodies against phosphorylcholine predict development of stroke in a population-based study from northern Sweden. Stroke 41:607–612

    Article  CAS  PubMed  Google Scholar 

  128. Gronlund H, Hallmans G, Jansson JH et al (2009) Low levels of IgM antibodies against phosphorylcholine predict development of acute myocardial infarction in a population-based cohort from northern Sweden. Eur J Cardiovasc Prev Rehabil 16:382–386

    Article  PubMed  Google Scholar 

  129. Carrero JJ, Hua X, Stenvinkel P et al (2009) Low levels of IgM antibodies against phosphorylcholine-A increase mortality risk in patients undergoing haemodialysis. Nephrol Dial Transplant 24:3454–3460

    Article  CAS  PubMed  Google Scholar 

  130. Frostegard J, Tao W, Georgiades A et al (2007) Atheroprotective natural anti-phosphorylcholine antibodies of IgM subclass are decreased in Swedish controls as compared to non-westernized individuals from New Guinea. Nutr Metab Lond 20:4–7

    Google Scholar 

  131. Shaw PX, Horkko S, Chang MK et al (2000) Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J Clin Invest 105:1731–1740

    Article  CAS  PubMed  Google Scholar 

  132. Chang MK, Binder CJ, Miller YI et al (2004) Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J Exp Med 200:1359–1370

    Article  CAS  PubMed  Google Scholar 

  133. Horkko S, Bird DA, Miller E et al (1999) Monoclonal auto-antibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest 103:117–128

    Article  CAS  PubMed  Google Scholar 

  134. Shaw PX, Horkko S, Tsimikas S et al (2001) Human-derived anti-oxidized LDL autoantibody blocks uptake of oxidized LDL by macrophages and localizes to atherosclerotic lesions in vivo. Arterioscler Thromb Vasc Biol 21:1333–1339

    Article  CAS  PubMed  Google Scholar 

  135. Binder CJ, Shaw PX, Chang MK et al (2005) The role of natural antibodies in atherogenesis. J Lipid Res 46:1353–1363

    Article  CAS  PubMed  Google Scholar 

  136. Chou MY, Hartvigsen K, Hansen LF et al (2008) Oxidation-specific epitopes are important targets of innate immunity. J Intern Med 263:479–488

    Article  CAS  PubMed  Google Scholar 

  137. Hartvigsen K, Chou MY, Hansen LF et al (2009) The role of innate immunity in atherogenesis. J Lipid Res 50:S388–S393

    Article  PubMed  CAS  Google Scholar 

  138. Faria-Neto JR, Chyu KY, Li X et al (2006) Passive immunization with monoclonal IgM antibodies against phosphorylcholine reduces accelerated vein graft atherosclerosis in apolipoprotein E-null mice. Atherosclerosis 189:83–90

    Article  CAS  PubMed  Google Scholar 

  139. Caligiuri G, Khallou-Laschet J, Vandaele M et al (2007) Phosphorylcholine-targeting immunization reduces atherosclerosis. J Am Coll Cardiol 50:540–546

    Article  CAS  PubMed  Google Scholar 

  140. Damoiseaux J, Rijkers G, Tervaert JW (2007) Pneumococcal vaccination does not increase circulating levels of IgM antibodies to oxidized LDL in humans and therefore precludes an anti-atherogenic effect. Atherosclerosis 190:10–11

    Article  CAS  PubMed  Google Scholar 

  141. Saad AF, Virella G, Chassereau C, Boackle RJ, Lopes-Virella MF (2006) OxLDL immune complexes activate complement and induce cytokine production by MonoMac 6 cells and human macrophages. J Lipid Res 47:1975–1983

    Article  CAS  PubMed  Google Scholar 

  142. Hammad SM, Twal WO, Barth JL et al (2009) Oxidized LDL immune complexes and oxidized LDL differentially affect the expression of genes involved with inflammation and survival in human U937 monocytic cells. Atherosclerosis 202:394–404

    Article  CAS  PubMed  Google Scholar 

  143. Piccinini AM, Midwoods KS (2010) DAMPenig inflammation by modulating TLR signalling. Mediators Inflam (in press)

  144. Nussinovitch U, Shoenfeld Y (2008) Intravenous immunoglobulin—indications andmechanisms in cardiovascular diseases. Autoimmun Rev 7:445–452

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vuilleumier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roux-Lombard, P., Pagano, S., Montecucco, F. et al. Auto-antibodies as Emergent Prognostic Markers and Possible Mediators of Ischemic Cardiovascular Diseases. Clinic Rev Allerg Immunol 44, 84–97 (2013). https://doi.org/10.1007/s12016-010-8233-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-010-8233-z

Keywords

Navigation