Skip to main content
Log in

Surface Marker Epithelial Cell Adhesion Molecule and E-cadherin Facilitate the Identification and Selection of Induced Pluripotent Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The derivation of induced pluripotent stem cells (iPSCs) requires not only efficient reprogramming methods, but also reliable markers for identification and purification of iPSCs. Here, we demonstrate that surface markers, epithelial cells adhesion molecule (EpCAM) and epithelial cadherin (E-cadherin) can be used for efficient identification and/or isolation of reprogrammed mouse iPSCs. By viral transduction of Oct4, Sox2, Klf4 and n- or c-Myc into mouse embryonic fibroblasts, we observed that the conventional mouse embryonic stem cell (mESC) markers, alkaline phosphatase (AP) and stage-specific embryonic antigen 1 (SSEA1), were expressed in incompletely reprogrammed cells that did not express all the exogenous reprogramming factors or failed to acquire pluripotent status even though exogenous reprogramming factors were expressed. EpCAM and E-cadherin, however, remained inactivated in these cells. Expression of EpCAM and E-cadherin correlated with the activation of Nanog and endogenous Oct4, and was only seen in the successfully reprogrammed iPSCs. Furthermore, purification of EpCAM-expressing cells at late reprogramming stage by FACS enriched the Nanog-expressing cell population suggesting the feasibility of selecting successful reprogrammed mouse iPSCs by EpCAM expression. We have thus identified new surface markers that can efficiently identify successfully reprogrammed iPSCs and provide an effective means for iPSC isolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Kao, C. F., Chuang, C. Y., Chen, C. H., & Kuo, H. C. (2008). Human pluripotent stem cells: current status and future perspectives. The Chinese Journal of Physiology, 51, 214–225.

    PubMed  Google Scholar 

  2. Leeb, C., Jurga, M., McGuckin, C., Moriggl, R., & Kenner, L. (2010). Promising new sources for pluripotent stem cells. Stem Cell Reviews, 6, 15–26.

    Article  PubMed  Google Scholar 

  3. Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    Article  PubMed  CAS  Google Scholar 

  4. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  PubMed  CAS  Google Scholar 

  5. Yamanaka, S. (2009). A fresh look at iPS cells. Cell, 137, 13–17.

    Article  PubMed  CAS  Google Scholar 

  6. Wang, Y., Mah, N., Prigione, A., Wolfrum, K., Andrade-Navarro, M. A., & Adjaye, J. (2010). A transcriptional roadmap to the induction of pluripotency in somatic cells. Stem Cell Reviews, 6, 282–296.

    Article  PubMed  CAS  Google Scholar 

  7. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., & Hochedlinger, K. (2008). Induced pluripotent stem cells generated without viral integration. Science, 322, 945–949.

    Article  CAS  Google Scholar 

  8. Yu, J., Hu, K., Smuga-Otto, K., et al. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324, 797–801.

    Article  CAS  Google Scholar 

  9. Meissner, A., Wernig, M., & Jaenisch, R. (2007). Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature Biotechnology, 25, 1177–1181.

    Article  PubMed  CAS  Google Scholar 

  10. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313–317.

    Article  PubMed  CAS  Google Scholar 

  11. Wernig, M., Meissner, A., Foreman, R., et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448, 318–324.

    Article  PubMed  CAS  Google Scholar 

  12. Tokuzawa, Y., Kaiho, E., Maruyama, M., et al. (2003). Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Molecular and Cellular Biology, 23, 2699–2708.

    Article  PubMed  CAS  Google Scholar 

  13. Loh, Y. H., Wu, Q., Chew, J. L., et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38, 431–440.

    Article  PubMed  CAS  Google Scholar 

  14. Schmelzer, E., Zhang, L., Bruce, A., et al. (2007). Human hepatic stem cells from fetal and postnatal donors. The Journal of Experimental Medicine, 204, 1973–1987.

    Article  PubMed  CAS  Google Scholar 

  15. Stingl, J., Raouf, A., Emerman, J. T., & Eaves, C. J. (2005). Epithelial progenitors in the normal human mammary gland. Journal of Mammary Gland Biology and Neoplasia, 10, 49–59.

    Article  PubMed  Google Scholar 

  16. Went, P., Vasei, M., Bubendorf, L., et al. (2006). Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. British Journal of Cancer, 94, 128–135.

    Article  PubMed  CAS  Google Scholar 

  17. Schmelzer, E., Wauthier, E., & Reid, L. M. (2006). The phenotypes of pluripotent human hepatic progenitors. Stem Cells, 24, 1852–1858.

    Article  CAS  Google Scholar 

  18. Dan, Y. Y., Riehle, K. J., Lazaro, C., et al. (2006). Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages. Proceedings of the National Academy of Sciences of the United States of America, 103, 9912–9917.

    Article  PubMed  CAS  Google Scholar 

  19. Anderson, R., Schaible, K., Heasman, J., & Wylie, C. (1999). Expression of the homophilic adhesion molecule, Ep-CAM, in the mammalian germ line. Journal of Reproduction and Fertility, 116, 379–384.

    Article  PubMed  CAS  Google Scholar 

  20. Sundberg, M., Jansson, L., Ketolainen, J., et al. (2009). CD marker expression profiles of human embryonic stem cells and their neural derivatives, determined using flow-cytometric analysis, reveal a novel CD marker for exclusion of pluripotent stem cells. Stem Cell Research, 2, 113–124.

    Article  PubMed  CAS  Google Scholar 

  21. Kolle, G., Ho, M., Zhou, Q., et al. (2009). Identification of human embryonic stem cell surface markers by combined membrane-polysome translation state array analysis and immunotranscriptional profiling. Stem Cells, 27, 2446–2456.

    Article  CAS  Google Scholar 

  22. Gonzalez, B., Denzel, S., Mack, B., Conrad, M., & Gires, O. (2009). EpCAM is involved in maintenance of the murine embryonic stem cell phenotype. Stem Cells, 27, 1782–1791.

    Article  CAS  Google Scholar 

  23. Ng, V. Y., Ang, S. N., Chan, J. X., & Choo, A. B. (2010). Characterization of epithelial cell adhesion molecule as a surface marker on undifferentiated human embryonic stem cells. Stem Cells, 28, 29–35.

    Article  CAS  Google Scholar 

  24. Lu, T. Y., Lu, R. M., Liao, M. Y., et al. (2010). Epithelial cell adhesion molecule regulation is associated with the maintenance of the undifferentiated phenotype of human embryonic stem cells. The Journal of Biological Chemistry, 285, 8719–8732.

    Article  PubMed  CAS  Google Scholar 

  25. Tang, A., Eller, M. S., Hara, M., Yaar, M., Hirohashi, S., & Gilchrest, B. A. (1994). E-cadherin is the major mediator of human melanocyte adhesion to keratinocytes in vitro. Journal of Cell Science, 107(Pt 4), 983–992.

    PubMed  CAS  Google Scholar 

  26. Soncin, F., Mohamet, L., Eckardt, D., et al. (2009). Abrogation of E-cadherin-mediated cell-cell contact in mouse embryonic stem cells results in reversible LIF-independent self-renewal. Stem Cells, 27, 2069–2080.

    Article  CAS  Google Scholar 

  27. Li, Z., Qiu, D., Sridharan, I., et al. (2010). Spatially resolved quantification of E-cadherin on target hES cells. The Journal of Physical Chemistry, 114, 2894–2900.

    PubMed  CAS  Google Scholar 

  28. Li, L., Wang, S., Jezierski, A., et al. (2010). A unique interplay between Rap1 and E-cadherin in the endocytic pathway regulates self-renewal of human embryonic stem cells. Stem Cells, 28, 247–257.

    Article  PubMed  Google Scholar 

  29. Huang, H. P., Yu, C. Y., Chen, H. F., et al. (2010). Factors from human embryonic stem cell-derived fibroblast-like cells promote topology-dependent hepatic differentiation in primate embryonic and induced pluripotent stem cells. The Journal of Biological Chemistry, 285, 33510–33519.

    Article  PubMed  CAS  Google Scholar 

  30. Chen, H. F., Chuang, C. Y., Shieh, Y. K., Chang, H. W., Ho, H. N., & Kuo, H. C. (2009). Novel autogenic feeders derived from human embryonic stem cells (hESCs) support an undifferentiated status of hESCs in xeno-free culture conditions. Human Reproduction, 24, 1114–1125.

    Article  CAS  Google Scholar 

  31. Chen, H. F., Kuo, H. C., Chien, C. L., et al. (2007). Derivation, characterization and differentiation of human embryonic stem cells: comparing serum-containing versus serum-free media and evidence of germ cell differentiation. Human Reproduction, 22, 567–577.

    Article  Google Scholar 

  32. Cotterman, R., & Knoepfler, P. S. (2009). N-Myc regulates expression of pluripotency genes in neuroblastoma including lif, klf2, klf4, and lin28b. PLoS ONE, 4, e5799.

    Article  PubMed  Google Scholar 

  33. Malynn, B. A., de Alboran, I. M., O’Hagan, R. C., et al. (2000). N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. Genes & Development, 14, 1390–1399.

    CAS  Google Scholar 

  34. Blelloch, R., Venere, M., Yen, J., & Ramalho-Santos, M. (2007). Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell, 1, 245–247.

    Article  PubMed  CAS  Google Scholar 

  35. Ruau, D., Ensenat-Waser, R., Dinger, T. C., et al. (2008). Pluripotency associated genes are reactivated by chromatin-modifying agents in neurosphere cells. Stem Cells, 26, 920–926.

    Article  CAS  Google Scholar 

  36. Munz, M., Kieu, C., Mack, B., Schmitt, B., Zeidler, R., & Gires, O. (2004). The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene, 23, 5748–5758.

    Article  PubMed  Google Scholar 

  37. Sridharan, R., Tchieu, J., Mason, M. J., et al. (2009). Role of the murine reprogramming factors in the induction of pluripotency. Cell, 136, 364–377.

    Article  PubMed  CAS  Google Scholar 

  38. Boyer, L. A., Lee, T. I., Cole, M. F., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122, 947–956.

    Article  PubMed  CAS  Google Scholar 

  39. Brambrink, T., Foreman, R., Welstead, G. G., et al. (2008). Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell, 2, 151–159.

    Article  PubMed  CAS  Google Scholar 

  40. Hanna, J., Saha, K., Pando, B., et al. (2009). Direct cell reprogramming is a stochastic process amenable to acceleration. Nature, 462, 595–601.

    Article  PubMed  CAS  Google Scholar 

  41. Takeichi, M. (1990). Cadherins: a molecular family important in selective cell-cell adhesion. Annual Review of Biochemistry, 59, 237–252.

    Article  PubMed  CAS  Google Scholar 

  42. Takeichi, M. (1991). Cadherin cell adhesion receptors as a morphogenetic regulator. Science, 251, 1451–1455.

    Article  CAS  Google Scholar 

  43. Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D., & Nusse, R. (1987). The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell, 50, 649–657.

    Article  PubMed  CAS  Google Scholar 

  44. Ozawa, M., Baribault, H., & Kemler, R. (1989). The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. The EMBO Journal, 8, 1711–1717.

    PubMed  CAS  Google Scholar 

  45. Fukunaga, Y., Liu, H., Shimizu, M., Komiya, S., Kawasuji, M., & Nagafuchi, A. (2005). Defining the roles of beta-catenin and plakoglobin in cell-cell adhesion: isolation of beta-catenin/plakoglobin-deficient F9 cells. Cell Structure and Function, 30, 25–34.

    Article  PubMed  CAS  Google Scholar 

  46. Miyabayashi, T., Teo, J. L., Yamamoto, M., McMillan, M., Nguyen, C., & Kahn, M. (2007). Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proceedings of the National Academy of Sciences of the United States of America, 104, 5668–5673.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Shih-Chih Tsai for assistance in preparation of manuscript. This work was supported by an intramural grant from Academia Sinica, and Stem Cell Priority Grants (#97-3111-B-001-009 and 98-2811-B-001-022) from the National Science Council, Taiwan.

Disclosures

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung-Chih Kuo.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(GIF 158 kb)

High resolution image file (TIFF 21897 kb)

Supplementary Fig. 1

Flow cytometry histogram of percentages of cells expressing SSEA1, EpCAM and E-Cadherin in MEFs, mESCs and mESC-like cells by lentiviral transduction. (GIF 188 kb)

High resolution image file (TIFF 17863 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, HF., Chuang, CY., Lee, WC. et al. Surface Marker Epithelial Cell Adhesion Molecule and E-cadherin Facilitate the Identification and Selection of Induced Pluripotent Stem Cells. Stem Cell Rev and Rep 7, 722–735 (2011). https://doi.org/10.1007/s12015-011-9233-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9233-y

Keywords

Navigation