Skip to main content
Log in

Inhibition of Protein Deubiquitination by PR-619 Activates the Autophagic Pathway in OLN-t40 Oligodendroglial Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Protein aggregate formation may be the result of an impairment of the protein quality control system, e.g., the ubiquitin proteasome system (UPS) and the lysosomal autophagic pathway. For proteasomal degradation, proteins need to be covalently modified by ubiquitin and deubiquitinated before the substrates are proteolytically degraded. Deubiquitination is performed by a large family of proteases, the deubiquitinating enzymes (DUBs). DUBs display a variety of functions and their inhibition may have pathological consequences. Using the broad specificity DUB inhibitor PR-619 we previously have shown that DUB inhibition leads to an overload of ubiquitinated proteins, to protein aggregate formation and subsequent inhibition of the UPS. This study was undertaken to investigate whether PR-619 modulates autophagic functions to possibly compensate the failure of the proteasomal system. Using the oligodendroglial cell line OLN-t40 and a new oligodendroglial cell line stably expressing GFP-LC3, we show that DUB inhibition leads to the activation of autophagy and to the recruitment of LC3 and of the ubiquitin binding protein p62 to the forming aggresomes without impairing the autophagic flux. Furthermore, PR-619 induced the transport of lysosomes to the forming aggregates in a process requiring an intact microtubule network. Further stimulation of autophagy by rapamycin did not prevent PR-619 aggregate formation but rather exerted cytotoxic effects. Hence, inhibition of DUBs by PR-619 activated the autophagic pathway supporting the hypothesis that the UPS and the autophagy–lysosomal pathway are closely linked together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gregersen, N. (2006). Protein misfolding disorders: Pathogenesis and intervention. Journal of Inherited Metabolic Disease, 29, 456–470.

    Article  PubMed  CAS  Google Scholar 

  2. Chin, L. S., Olzmann, J. A., & Li, L. (2010). Parkin-mediated ubiquitin signalling in aggresome formation and autophagy. Biochemical Society Transactions, 38, 144–149.

    Article  PubMed  CAS  Google Scholar 

  3. Dohm, C. P., Kermer, P., & Bahr, M. (2008). Aggregopathy in neurodegenerative diseases: Mechanisms and therapeutic implication. Neurodegenerative Diseases, 5, 321–338.

    Article  PubMed  CAS  Google Scholar 

  4. Richter-Landsberg, C., & Goldbaum, O. (2003). Stress proteins in neural cells: Functional roles in health and disease. Cellular and Molecular Life Sciences, 60, 337–349.

    Article  PubMed  CAS  Google Scholar 

  5. Schwartz, A. L., & Ciechanover, A. (2009). Targeting proteins for destruction by the ubiquitin system: Implications for human pathobiology. Annual Review of Pharmacology and Toxicology, 49, 73–96. doi:10.1146/annurev.pharmtox.051208.165340.

    Article  PubMed  CAS  Google Scholar 

  6. Jellinger, K. A. (2009). Recent advances in our understanding of neurodegeneration. Journal of Neural Transmission, 116(9), 1111–1162. doi:10.1007/s00702-009-0240-y.

    Article  PubMed  CAS  Google Scholar 

  7. Wong, E., & Cuervo, A. M. (2010). Integration of clearance mechanisms: The proteasome and autophagy. Cold Spring Harbor Perspectives in Biology, 2(12), a006734. doi:10.1101/cshperspect.a006734.

    Article  PubMed  CAS  Google Scholar 

  8. Matsuda, N., & Tanaka, K. (2010). Does impairment of the ubiquitin-proteasome system or the autophagy–lysosome pathway predispose individuals to neurodegenerative disorders such as Parkinson’s disease? Journal of Alzheimers Disease, 19(1), 1–9. doi:10.3233/JAD-2010-1231.

    CAS  Google Scholar 

  9. Huang, Q., & Figueiredo-Pereira, M. E. (2010). Ubiquitin/proteasome pathway impairment in neurodegeneration: Therapeutic implications. Apoptosis, 15, 1292–1311.

    Article  PubMed  CAS  Google Scholar 

  10. Reyes-Turcu, F. E., Ventii, K. H., & Wilkinson, K. D. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annual Review of Biochemistry, 78, 363–397.

    Article  PubMed  CAS  Google Scholar 

  11. Olzmann, J. A., & Chin, L. S. (2008). Parkin-mediated K63-linked polyubiquitination. Autophagy, 4, 85–87.

    PubMed  CAS  Google Scholar 

  12. Yao, T.-P. (2010). The role of ubiquitin in autophagy-dependent protein aggregate processing. Genes Cancer, 7, 779–786.

    Article  Google Scholar 

  13. Lamark, T., & Johansen, T. (2012). Aggrephagy: Selective disposal of protein aggregates by macroautophagy. International Journal of Cell Biology, 2012, 736905.

    Article  PubMed  Google Scholar 

  14. Tyedmers, J., Mogk, A., & Bukau, B. (2010). Cellular strategies for controlling protein aggregation. Nature Reviews Molecular Cell Biology, 11(11), 777–788. doi:10.1038/nrm2993.

    Article  PubMed  CAS  Google Scholar 

  15. Mizushima, N., Yoshimori, T., & Levine, B. (2010). Methods in mammalian autophagy research. Cell, 140, 313–326.

    Article  PubMed  CAS  Google Scholar 

  16. Klionsky, D. J., Abdalla, F. C., Abeliovich, H., Abraham, R. T., Acevedo-Arozena, A., et al. (2012). Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 8(4), 445–544.

    Article  PubMed  CAS  Google Scholar 

  17. Jahreiss, L., Menzies, F. M., & Rubinsztein, D. C. (2008). The itinerary of autophagosomes: From peripheral formation to kiss-and-run fusion with lysosomes. Traffic, 9(4), 574–587. doi:10.1111/j.1600-0854.2008.00701.x.

    Article  PubMed  CAS  Google Scholar 

  18. Kirkin, V., McEwan, D. G., Novak, I., & Dikic, I. (2009). A role for ubiquitin in selective autophagy. Molecular Cell, 34, 259–269.

    Article  PubMed  CAS  Google Scholar 

  19. Kraft, C., Peter, M., & Hofmann, K. (2010). Selective autophagy: Ubiquitin-mediated recognition and beyond. Nature Cell Biology, 12(9), 836–841. doi:10.1038/ncb0910-836.

    Article  PubMed  CAS  Google Scholar 

  20. Boland, B., & Nixon, R. A. (2006). Neuronal macroautophagy: From development to degeneration. Molecular Aspects of Medicine, 27(5–6), 503–519.

    Article  PubMed  CAS  Google Scholar 

  21. Klionsky, D. J. (2007). Autophagy: From phenomenology to molecular understanding in less than a decade. Nature Reviews Molecular Cell Biology, 8, 931–937.

    Article  PubMed  CAS  Google Scholar 

  22. Jaenen, S. B., Chaachouay, H., & Richter-Landsberg, C. (2010). Autophagy is activated by proteasomal inhibition and involved in aggresome clearance in cultured astrocytes. Glia, 58, 1766–1774.

    Article  Google Scholar 

  23. Ding, W.-X., Ni, H.-M., Gao, W., Yoshimori, T., Stolz, D. B., et al. (2007). Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. American Journal of Pathology, 171(2), 513–524.

    Article  PubMed  CAS  Google Scholar 

  24. Pandey, U. B., Nie, Z., Batlevi, Y., McCray, B. A., Ritson, G. P., et al. (2007). HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature, 447(7146), 859–863.

    Article  PubMed  CAS  Google Scholar 

  25. Seiberlich, V., Goldbaum, O., Zhukareva, V., & Richter-Landsberg, C. (2012). The small molecule inhibitor PR-619 of deubiquitinating enzymes affects the microtubule network and causes protein aggregate formation in neural cells: Implications for neurodegenerative diseases. Biochimica Et Biophysica Acta-Molecular Cell Research, 1823, 2057–2068.

    Article  CAS  Google Scholar 

  26. RichterLandsberg, C., & Heinrich, M. (1996). OLN-93: A new permanent oligodendroglia cell line derived from primary rat brain glial cultures. Journal of Neuroscience Research, 45(2), 161–173.

    Article  CAS  Google Scholar 

  27. Goldbaum, O., Oppermann, M., Handschuh, M., Dabir, D., Zhang, B., et al. (2003). Proteasome inhibition stabilizes tau inclusions in oligodendroglial cells that occur after treatment with okadaic acid. Journal of Neuroscience, 23, 8872–8880.

    PubMed  CAS  Google Scholar 

  28. Neuhoff, V., Philipp, K., Zimmer, H. G., & Mesecke, S. (1979). Simple, versatile, sensitive and volume-independent method for quantitative protein determination which is independent of other external influences. Hoppe-Seylers Zeitschrift Fur Physiologische Chemie, 360, 1657–1670.

    Article  CAS  Google Scholar 

  29. Bove, J., Martinez-Vicente, M., & Vila, M. (2011). Fighting neurodegeneration with rapamycin: Mechanistic insights. Nature Reviews Neuroscience, 12(8), 437–452. doi:10.1038/nrn3068.

    Article  PubMed  CAS  Google Scholar 

  30. Amerik, A. Y., & Hochstrasser, M. (2004). Mechanism and function of deubiquitinating enzymes. Biochimica Et Biophysica Acta, 1695(1–3), 189–207.

    Article  PubMed  CAS  Google Scholar 

  31. Komander, D., Clague, M. J., & Urbe, S. (2009). Breaking the chains: Structure and function of the deubiquitinases. Nature Reviews Molecular Cell Biology, 10(8), 550–563. doi:10.1038/nrm2731.

    Article  PubMed  CAS  Google Scholar 

  32. Todi, S. V., & Paulson, H. L. (2011). Balancing act: Deubiquitinating enzymes in the nervous system. Trends in Neurosciences, 34, 370–382.

    Article  CAS  Google Scholar 

  33. Li, Y. H., Schrodi, S., Rowland, C., Tacey, K., Catanese, J., et al. (2006). Genetic evidence for ubiquitin-specific proteases USP24 and USP40 as candidate genes for late-onset Parkinson disease. Human Mutation, 27, 1017–1023.

    Article  PubMed  CAS  Google Scholar 

  34. Proctor, C. J., Tangeman, P. J., & Ardley, H. C. (2010). Modelling the role of UCH-L1 on protein aggregation in age-related neurodegeneration. PLoS ONE, 5, 12.

    Article  Google Scholar 

  35. Kessler, B. M., & Edelmann, M. J. (2011). PTMs in conversation: Activity and function of deubiquitinating enzymes regulated via post-translational modifications. Cell Biochemistry and Biophysics, 60, 21–38.

    Article  PubMed  CAS  Google Scholar 

  36. Vucic, D., Dixit, V. M., & Wertz, I. E. (2011). Ubiquitylation in apoptosis: A post-translational modification at the edge of life and death. Nature Reviews Molecular Cell Biology, 12, 439–452.

    Article  PubMed  CAS  Google Scholar 

  37. Ramakrishna, S., Suresh, B., & Baek, K.-H. (2011). The role of deubiquitinating enzymes in apoptosis. Cellular and Molecular Life Sciences, 68, 15–26.

    Article  PubMed  CAS  Google Scholar 

  38. Altun, M., Kramer, H. B., Willems, L. I., McDermott, J. L., Leach, C. A., et al. (2011). Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chemistry and Biology, 18, 1401–1412.

    Article  PubMed  CAS  Google Scholar 

  39. Kramer, H. B., Nicholson, B., Kessler, B. M., & Altun, M. (2012). Detection of ubiquitin-proteasome enzymatic activities in cells: Application of activity-based probes to inhibitor development. Biochimica Et Biophysica Acta, 1823(11), 2029–2037. doi:10.1016/j.bbamcr.2012.05.014.

    Article  PubMed  CAS  Google Scholar 

  40. Richter-Landsberg, C., & Bauer, N. G. (2004). Tau-inclusion body formation in oligodendroglia: The role of stress proteins and proteasome inhibition. International Journal of Developmental Neuroscience, 22(7), 443–451.

    Article  PubMed  CAS  Google Scholar 

  41. Fellner, L., Jellinger, K. A., Wenning, G. K., & Stefanova, N. (2011). Glial dysfunction in the pathogenesis of alpha-synucleinopathies: Emerging concepts. Acta Neuropathologica, 121(6), 675–693. doi:10.1007/s00401-011-0833-z.

    Article  PubMed  CAS  Google Scholar 

  42. Kuusisto, E., Kauppinen, T., & Alafuzoff, I. (2008). Use of p62/SQSTM1 antibodies for neuropathological diagnosis. Neuropathology and Applied Neurobiology, 34(2), 169–180.

    Article  PubMed  CAS  Google Scholar 

  43. Johansen, T., & Lamark, T. (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy, 7, 279–296.

    Article  PubMed  CAS  Google Scholar 

  44. Ichimura, Y., & Komatsu, M. (2010). Selective degradation of p62 by autophagy. Seminars in Immunopathology, 32, 431–436.

    Article  PubMed  Google Scholar 

  45. Korolchuk, V. I., Menzies, F. M., & Rubinsztein, D. C. (2010). Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy–lysosome systems. FEBS Letters, 584, 1393–1398.

    Article  PubMed  CAS  Google Scholar 

  46. Kuusisto, E., Suuronen, T., & Salminen, A. (2001). Ubiquitin-binding protein p62 expression is induced during apoptosis and proteasomal inhibition in neuronal cells. Biochemical and Biophysical Research Communications, 280(1), 223–228.

    Article  PubMed  CAS  Google Scholar 

  47. Schwarz, L., Goldbaum, O., Bergmann, M., Probst-Cousin, S., & Richter-Landsberg, C. (2012). Involvement of macroautophagy in multiple system atrophy and protein aggregate formation in oligodendrocytes. Journal of Molecular Neuroscience, 47, 256–266.

    Article  PubMed  CAS  Google Scholar 

  48. Pankiv, S., Clausen, T. H., Lamark, T., Brech, A., Bruun, J.-A., et al. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. Journal of Biological Chemistry, 282(33), 24131–24145.

    Article  PubMed  CAS  Google Scholar 

  49. Taillebourg, E., Gregoire, I., Viargues, P., Jacomin, A. C., Thevenon, D., et al. (2012). The deubiquitinating enzyme USP36 controls selective autophagy activation by ubiquitinated proteins. Autophagy, 8, 767–779.

    Article  PubMed  CAS  Google Scholar 

  50. Berger, Z., Ravikumar, B., Menzies, F. M., Oroz, L. G., Underwood, B. R., et al. (2006). Rapamycin alleviates toxicity of different aggregate-prone proteins. Human Molecular Genetics, 15(3), 433–442.

    Article  PubMed  CAS  Google Scholar 

  51. Majumder, S., Richardson, A., Strong, R., & Oddo, S. (2011). Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS One, 6(9), e25416. doi:10.1371/journal.pone.0025416.

    Article  PubMed  CAS  Google Scholar 

  52. Moreau, K., Luo, S., & Rubinsztein, D. C. (2010). Cytoprotective roles for autophagy. Current Opinion in Cell Biology, 22(2), 206–211. doi:10.1016/j.ceb.2009.12.002.

    Article  PubMed  CAS  Google Scholar 

  53. Ravikumar, B., Berger, Z., Vacher, C., O’Kane, C. J., & Rubinsztein, D. C. (2006). Rapamycin pre-treatment protects against apoptosis. Human Molecular Genetics, 15(7), 1209–1216.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Deutsche Forschungsgemeinschaft. The expert technical help of Angelika Spanjer is gratefully acknowledged. We thank Dr. Olaf Goldbaum for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Victoria Zhukareva or Christiane Richter-Landsberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiberlich, V., Borchert, J., Zhukareva, V. et al. Inhibition of Protein Deubiquitination by PR-619 Activates the Autophagic Pathway in OLN-t40 Oligodendroglial Cells. Cell Biochem Biophys 67, 149–160 (2013). https://doi.org/10.1007/s12013-013-9622-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9622-8

Keywords

Navigation