Skip to main content

Advertisement

Log in

Comparative Study of Serum Zinc, Copper, Manganese, and Iron in Preeclamptic Pregnant Women

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Preeclampsia complicates 2–8 % of all pregnancies and it is one of the leading causes of maternal mortality and pre-term delivery in the world. Unfortunately, there is scarcity of document discussing the circulating level of several essential trace elements in preeclampsia patients in Bangladesh. The present study was designed to evaluate the serum concentration of four trace elements, namely zinc, copper, manganese, and iron, in preeclamptic pregnant women. The study was conducted as a case–control study with 50 preeclamptic pregnant women as cases and 58 normotensive pregnant women as controls. Obstetric, anthropometric, and clinical data were collected at routine obstetric visits. Serum trace elements were determined by flame atomic absorption spectroscopy. Independent sample t test and Pearson’s correlation test were done for the statistical analysis using the statistical software package SPSS, version 16.0 (SPSS Inc., Chicago, IL). We observed significant differences for gestational age, body mass index, and systolic and diastolic blood pressure between patient and control groups (p < 0.05). Analysis of serum trace elements explored significantly lower level of all the four elements in preeclampsia patients in comparison to the control group (p < 0.05). Pearson’s correlation analysis explored that the correlation between serum level of different trace elements was statistically insignificant (p > 0.05) except the correlation between zinc and iron in preeclampsia patients (p < 0.05). Establishment of inter-element relationship strongly supports that there was a disturbance in the element homeostasis in patient with preeclampsia. In conclusion, our study suggests that preeclampsia patients have considerably lower level of serum zinc, copper, manganese, and iron compared to the healthy pregnant women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Genc H, Uzun H, Benian A, Simsek G, Gelisgen R, Madazli R, Guralp O (2011) Evaluation of oxidative stress markers in first trimester for assessment of pre-eclampsia risk. Arch Gynecol Obstet 284:1367–1373

    Article  PubMed  CAS  Google Scholar 

  2. Adiga U, D’souza V, Kamath A, Mangalore N (2007) Antioxidant activity and lipid peroxidation in pre-eclampsia. J Chin Med Assoc 70(10):435–438

    Article  PubMed  CAS  Google Scholar 

  3. Jia RZ, Liu XM, Wang X, Wu HQ (2010) Relationship between cardiovascular function and fetal growth restriction in women with pre-eclampsia. Int J Gynaecol Obstet 110:61–63

    Article  PubMed  Google Scholar 

  4. Melchiore K, Sutherland GR, Liberati M, Basky T (2011) Pre-eclampsia is associated with persistent postpartum cardiovascular impairment. Hypertension 58:708–715

    Article  Google Scholar 

  5. Ghulmiyyah L, Sibai B (2012) Maternal mortality from pre-eclampsia/eclampsia. Semin Perinatol 36(1):56–59

    Article  PubMed  Google Scholar 

  6. Yaliwal RG, Jaju PB, Vanishree M (2011) Eclampsia and perinatal outcome: a retrospective study in a teaching hospital. J Clin Diagn Res 5(5):1056–1059

    Google Scholar 

  7. Akhtar S, Begum S, Ferdousi S (2011) Calcium and zinc deficiency in pre-eclamptic women. J Bangladesh Soc Physiol 6(2):94–99

    Google Scholar 

  8. Lu JF, Nightingale CH (2000) Magnesium sulfate in eclampsia and pre-eclampsia: pharmacokinetic principles. Clin Pharmacokinet 38(4):305–314

    Article  PubMed  CAS  Google Scholar 

  9. Akinloye O, Oyewale OJ, Oguntibeju OO (2010) Evaluation of trace elements in pregnant women with pre-eclampsia. Afr J Biotechnol 9(32):5196–5202

    CAS  Google Scholar 

  10. Vasiljevic N, Vasiljevic M, Plecas D (1996) The role of nutritional factors in pre-eclampsia and eclampsia. Srp Arh Celok Lek 124(5–6):156–159

    PubMed  CAS  Google Scholar 

  11. Roberts JM, Balk JL, Bodner LM, Belizan JM, Berge E, Martinez A (2003) Nutrient involvement in pre-eclampsia. J Nutr 133(55):1684–1692

    Google Scholar 

  12. Muralidhar LH (2004) Serum trace element levels and the complexity of inter element relations in patients with Parkinson’s disease. J Trace Elem Med Biol 18:163–171

    Article  Google Scholar 

  13. Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano I (2011) Zinc homeostasis and signaling in health and diseases: zinc signaling. J Biol Inorg Chem 16:1123–1134

    Article  PubMed  CAS  Google Scholar 

  14. Frederickson CJ, Koh J, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    Article  PubMed  CAS  Google Scholar 

  15. Fukada T, Kambe T (2011) Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 3:662–674

    Article  PubMed  CAS  Google Scholar 

  16. Hojyo S, Fukada T, Shimoda S, Ohashi W, Bin B, Koseki H, Hirano T (2011) The zinc transporter SLC39A14/ZIP14 controls G-protein coupled receptor-mediated signaling required for systemic growth. PLoS One 6(3):e18059

    Article  PubMed  CAS  Google Scholar 

  17. Bader AA, Hussain T, Mosawi MA, Otaibi M, Abul H, Khalifa D, Dashti H (1997) Serum zinc and copper concentrations in pregnant women from Kuwait. J Trace Elem Exp Med 10:209–215

    Article  Google Scholar 

  18. Ashraf M, Nasarullah M, Salam A, Khurshid R, Ahmed Z (2007) Maternal serum zinc concentration in gravidae suffering from pre-eclampsia. APMC 1(1):24–27

    Google Scholar 

  19. Jain S, Sharma P, Kulshreshtha S, Mohan G, Singh S (2010) The role of serum calcium, magnesium, and zinc in pre-eclampsia. Biol Trace elem Res 133(2):162–170

    Article  PubMed  CAS  Google Scholar 

  20. Bahadoran P, Zendehdel M, Movahedian A, Zahraee RH (2010) The relationship between serum zinc level and pre-eclampsia. Iran J Nurs Midwifery Res 15:120–124

    PubMed  Google Scholar 

  21. Tuschl K, Clayton PT, Gospe SM, Gulab S, Ibrahim S, Singhi P, Aulakh R (2012) Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. The American Journal of Human Genetics 90(3):457–466

    Google Scholar 

  22. Quadri M, Federico A, Zhao T, Breedveld GJ, Battisti C, Delnooz C (2012) Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. The American Journal of Human Genetics 90(3):467–477

    Google Scholar 

  23. Fujishiro F, Yano Y, Takada Y, Tanihara M, Himeno S (2012) Roles of ZIP8, ZIP14, and DMT1 in transport of cadmium and manganese in mouse kidney proximal tubule cells. Metallomics 4:700–708

    Article  PubMed  CAS  Google Scholar 

  24. Galvez-Peralta M, He L, Jorge-Nebert LF, Wang B, Miller ML, Eppert BL, Afton S, Nebert DW (2012) ZIP8 zinc transporter: indispensable role for both multiple-organ organogenesis and hematopoiesis in utero. PLoS One 7(5):e36055

    Article  PubMed  CAS  Google Scholar 

  25. Hallberg L (1992) Iron balance in pregnancy and lactation. In: Fomon SJ, Zlotkin S (eds) Nutritionalanemias. Raven, New York, pp 13–25

    Google Scholar 

  26. Scholl T, Reilly T (2000) Anemia iron and pregnancy outcome. Am J Nutr 130:443–447

    Google Scholar 

  27. Caughey AB, Stotland NE, Washington AE, Escobar GJ (2005) Maternal ethnicity, paternal ethnicity and parental ethnic discordance: predictors of pre-eclampsia. Obstet Gynecol 106:156–161

    Article  PubMed  Google Scholar 

  28. Czupryn M, Falchuk KH, Stankiewicz A, Vallee BL (1993) A Euglena gracilis zinc endonuclease. Biochem 32(5):1204–1211

    Article  CAS  Google Scholar 

  29. Howlader MZH, Parveen S, Tamanna S, Khan TA, Begum F (2009) Oxidative stress and antioxidant status in neonates born to pre-eclamptic mother. J Tropical Ped 55(6):363–367

    Article  Google Scholar 

  30. Kishwara S, Tanira S, Omar E, Wazed F, Ara S (2011) Effects of pre-eclampsia on perinatal outcome—a study done in the specialized urban hospital set up in Bangladesh. Bangladesh Med J 40(1):33–36

    Google Scholar 

  31. Mbah AK, Kornosky JL, Kristensen S, August EM, Alio AP, Marty PJ et al (2010) Super-obesity and risk for early and late pre-eclampsia. BJOG 117:997–1004

    Article  PubMed  CAS  Google Scholar 

  32. Villamor ES, Cnattingius (2006) Interpregnancy weight change and risk of adverse pregnancy outcomes: a population-based study. Lancet 368:1164–1170

    Article  PubMed  Google Scholar 

  33. Norrozi M, Borna S, Hanachi P, Faghihzadeh S, Haghollahi F, Golkhou S (2012) Evaluation of zinc supplementation effect on fetal outcomes in pregnant women with lower–than–median serum zinc concentration. J Fam Reprod Health 6(2):85–89

    Google Scholar 

  34. Mirzaie F, Shorbaf FR, Kazeronie AH (2009) Association of maternal C-reactive protein levels with severity of pre-eclampsia. Acta Med Iran 47(4):293–296

    CAS  Google Scholar 

  35. Saylik SA, Alkis I, Bayram N, Tuna V, Imamoglu N, Ceylan Y (2009) Maternal serum leptin levels in severe pre-eclamptic pregnant women in early postpartum stage. Int J Med Med Sci 1(6):248–253

    CAS  Google Scholar 

  36. Conde A, Belizan JM, Lede R, Bergel EF (1993) What does an elevated mean arterial pressure in the second half of pregnancy predict gestational hypertension or pre-eclampsia. Am J Obstet Gynaecol 169:509–514

    Article  Google Scholar 

  37. Hussein ZG (2012) Study of liver and kidney functions in non-pregnant, pregnant and pre-eclamptic women. J Baghdad for Sci 9(2):277–284

    Google Scholar 

  38. Fukada T, Hojyo S, Furuichi T (2013) Zinc signal: a new player in osteobiology. J Bone Miner Metab 31:129–135

    Article  PubMed  CAS  Google Scholar 

  39. Sun JY, Jing MY, Weng XY, Fu LJ, Xu ZR, Zi NT, Wang JF (2005) Effect of dietary zinc levels on the activities of enzymes, weights of organs, and the concentrations of zinc and copper in growing rats. Biol Trace Elem Res 107(2):153–165

    Article  PubMed  CAS  Google Scholar 

  40. Schuessel K, Schafer S, Bayer TA, Czech C, Pradier L, Muller-Spahn F et al (2005) Impaired Cu/Zn-SOD activity contributes to increased oxidative damage in APP transgenic mice. Neurobiol Dis 18(1):89–99

    Article  PubMed  CAS  Google Scholar 

  41. Al-Rubaye FG (2009) Trace elements homeostasis in pre-eclampsia. Iraq J Med Sci 7(2):116–123

    Google Scholar 

  42. Mahomed K, Williams MA, Woelk GB, Mudzamiri S, Madzime S, King IB, Bankson DD (2004) Leukocyte selenium, zinc and copper concentrations in preeclampsia and normotensive pregnant women. Biol Trace Elem Res 75:107–118

    Article  Google Scholar 

  43. Ziael S, Ranjkesh F, Faghihzadeh S (2008) Evaluation of 24-hour copper in pre-eclamptic vs normotensive pregnant and non-pregnant women. Int J Fertil Steril 2:9–12

    Google Scholar 

  44. Ugwuja EI, Akubugwo EI, Ibiam UA, Obidoa O, Ugwu NC (2010) Impact of maternal copper and zinc status on pregnancy outcomes in a population of pregnant Nigerians. Pak J Nutr 9:678–682

    Article  CAS  Google Scholar 

  45. Kumar GU, Mehreen J, Manju V, Meena V, Ragini M, Devashish S (2007) Role of trace elements in anemia in pregnancy. J Obstet Gynecol India 57(5):410–412

    Google Scholar 

  46. Begum R, Begum A, Bullough CH, Johanson RB (2000) Reducing maternal mortality from eclampsia using magnesium sulphate. Eur J Obstet Gynaecol 92:222–223

    Article  Google Scholar 

  47. Hofmeyr GT, Duley L, Atallah A (2007) Dietary calcium supplementation for prevention of pre-eclampsia and related problems: a systematic review and commentary. Br J Obstet Gynaecol 114(8):933–943

    Article  CAS  Google Scholar 

  48. Lou GS, Amirabi A, Yazdian M, Pashapour N (2008) Evaluation of serum calcium, magnesium, copper and zinc levels in women with pre-eclampsia. Iran J Med Sci 33:231–234

    Google Scholar 

  49. Rathore S, Gupta A, Batra HS, Rathore R (2011) Comparative study of trace elements and serum ceruloplasmin level in normal and pre-eclamptic pregnancies with their cord blood. Biomed Res 22(2):207–210

    CAS  Google Scholar 

  50. Balla G, Jacob HS, Eaton JW, Belcher JD, Vercelotti GM (1991) Hemin: a possible physiological mediator of low density lipoprotein oxidation and endothelial injury. Arterioscler Thromb 11:1700–1711

    Article  PubMed  CAS  Google Scholar 

  51. Hubel CA, Kozlov AV, Kagan EV, Evans RW, Davidge ST, McLaughin MK, Roberts JM (1996) Decreased transferrin and increased transferrin saturation in sera of women with pre-eclampsia. Am J Obstet Gynecol 175:692–700

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to all the staffs, nurses, and physicians of the Department of Obstetrics and Gynecology, Noakhali Medical College Hospital, Bangladesh for their technical and administrative support. The authors are also thankful to all the participants of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Safiqul Islam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarwar, M.S., Ahmed, S., Ullah, M.S. et al. Comparative Study of Serum Zinc, Copper, Manganese, and Iron in Preeclamptic Pregnant Women. Biol Trace Elem Res 154, 14–20 (2013). https://doi.org/10.1007/s12011-013-9721-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9721-9

Keywords

Navigation