Skip to main content
Log in

Postnuclear Supernatant: An In Vitro Model for Assessing Cadmium-Induced Neurotoxicity

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is a toxic heavy metal commonly found in industrial workplaces, a food contaminant and a major constituent of cigarette smoke. Most of the organs are susceptible to Cd-induced toxicity, including brain. Postnuclear supernatant (PNS) has been accepted as an in vitro model for assessing xenobiotic induced toxicity. The goal of the present study was to validate PNS as an in vitro model for investigating the effect of Cd-induced neurotoxicity. Neurotoxic induction by Cd was established in a dose-dependent manner in PNS in vitro. Enzymatic and non-enzymatic antioxidants were used as biomarkers of exposure. Antioxidant enzymatic activity was measured as a significant increase in activities of catalase, superoxide dismutase, and glutathione S-transferase. On exposure to Cd, a significant increase in acetylcholinesterase and decrease in sodium–potassium ATPase activity was also observed. Non-enzymatic effect was also demonstrated as a significant elevation in reduced glutathione and non-protein thiol activity, but there was no significant increase or decrease in the concentrations of protein thiol. In accordance with the toxicity of Cd towards the studied brain structure, Cd-induced oxidative stress has been a focus of toxicological research as a possible mechanism of neurotoxicity. Our results suggest that PNS preparations can be used as a model for future investigation of xenobiotic-induced neurotoxicity under in vitro conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Patra RC, Rautray AK, Swarup D (2011) Oxidative stress in lead and cadmium toxicity and its amelioration. Vet Med Int. doi:10.4061/2011/457327

  2. Nzengue Y, Candéias SM, Sauvaigo S, Douki T, Favier A, Rachidi W, Guiraud P (2011) The toxicity redox mechanisms of cadmium alone or together with copper and zinc homeostasis alteration: its redox biomarkers. J Trace Elem Med Biol 25:171–180

    Article  PubMed  CAS  Google Scholar 

  3. Jiang G, Xu L, Zhang B, Wu L (2011) Effect of cadmium on proliferation and self-renewal activity of prostate stem/progenitor cells. Environ Toxicol Pharmacol 32:275–284

    Article  PubMed  CAS  Google Scholar 

  4. Shimada H, Yasutake A, Hirashima T, Takamure Y, Kitano T, Waalkes MP, Imamura Y (2008) Strain difference of cadmium accumulation by liver slices of inbred Wistar-Imamichi and Fischer 344 rats. Toxicol In Vitro 22:338–343

    Article  PubMed  CAS  Google Scholar 

  5. Flora SJ, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res 4:501–523

    Google Scholar 

  6. Méndez-Armenta M, Ríos C (2007) Cadmium neurotoxicity. Environ Toxicol Pharmacol 3:350–358

    Article  Google Scholar 

  7. Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol 3:209–214

    Article  Google Scholar 

  8. Joseph P (2009) Mechanisms of cadmium carcinogenesis. Toxicol Appl Pharmacol 3:272–279

    Article  Google Scholar 

  9. Hartwig A (2010) Mechanisms in cadmium-induced carcinogenicity: recent insights. Biometals 5:951–960

    Article  Google Scholar 

  10. Yazıhan N, Kaçar Koçak M, Akçıl E, Erdem O, Sayal A, Güven C, Akyürek N (2011) Involvement of galectin-3 in cadmium-induced cardiac toxicity. Anadolu Kardiyol Derg 11:479–484

    PubMed  Google Scholar 

  11. López E, Arce C, Oset-Gasque MJ, Cañadas S, González MP (2006) Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic Biol Med 40:940–951

    Article  PubMed  Google Scholar 

  12. Rai A, Maurya SK, Khare P, Srivastava A, Bandyopadhyay S (2010) Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: synergistic action of metal mixture in glial and neuronal functions. Toxicol Sci 2:586–601

    Article  Google Scholar 

  13. Fernandes CG, Borges CG, Seminotti B, Amaral AU, Knebel LA, Eichler P, de Oliveira AB, Leipnitz G, Wajner M (2011) Experimental evidence that methylmalonic acid provokes oxidative damage and compromises antioxidant defenses in nerve terminal and striatum of young rats. Cell Mol Neurobiol 5:775–785

    Article  Google Scholar 

  14. Calabrese V, Bates TE, Stella AMG (2000) NO synthase and NO-dependent signal pathways in brain aging and neurodegenerative disorders: the role of oxidant/antioxidant balance. Neurochem Res 25:1315–1341

    Article  PubMed  CAS  Google Scholar 

  15. Milbury P, Blumberg JB (2003) Dietary antioxidants-human studies overview. In: Cutler RG, Rodriguez H (eds) Critical reviews of oxidative stress and aging: advances in basic science, diagnostics, and intervention. World Scientific, London, pp 487–502

    Google Scholar 

  16. Sgaravatti AM, Vargas BA, Zandoná BR, Deckmann KB, Rockenbach FJ, Moraes TB, Monserrat JM, Sgarbi MB, Pederzolli CD, Wyse AT, Wannmacher CM, Wajner M, Dutra-Filho CS (2008) Tyrosine promotes oxidative stress in cerebral cortex of young rats. Int J Dev Neurosci 26:551–559

    Article  PubMed  CAS  Google Scholar 

  17. Moraes TB, Zanin F, da Rosa A, de Oliveira A, Coelho J, Petrillo F, Wajner M, Dutra-Filho CS (2010) Lipoic acid prevents oxidative stress in vitro and in vivo by an acute hyperphenylalaninemia chemically-induced in rat brain. J Neurol Sci 292:89–95

    Article  PubMed  CAS  Google Scholar 

  18. Fernandes CG, Leipnitz G, Seminotti B, Amaral AU, Zanatta A, Vargas CR, Dutra Filho CS, Wajner M (2010) Experimental evidence that phenylalanine provokes oxidative stress in hippocampus and cerebral cortex of developing rats. Cell Mol Neurobiol 2:317–326

    Article  Google Scholar 

  19. Skrzycki M, Czeczot H, Majewska M, Podsiad M, Karlik W, Grono D, Wiechetek M (2010) Enzymatic antioxidant defense in isolated rat hepatocytes exposed to cadmium. Pol J Vet Sci 4:673–679

    Google Scholar 

  20. Clairborne A (1985) Catalase activity. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC, Boca Raton, pp 283–284

    Google Scholar 

  21. Misra HP, Fridovich I (1972) Role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    PubMed  CAS  Google Scholar 

  22. Habig WH, Pabst M, Jaoby WB (1974) Glutathione S-transferase: The first step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  23. Ellman GL, Courtney KD, Andres V, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  24. Fiske CH, Subbarow YJ (1925) The calorimetric determination of phosphorus. Biol Chem 66:375–381

    CAS  Google Scholar 

  25. Jollow DJ, Mitchell JR, Zamppaglione Z, Gillette JR (1974) Bromobenzene induced liver necrosis; Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolites. Pharmacol 11:151–169

    Article  CAS  Google Scholar 

  26. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  PubMed  CAS  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  28. Wen YF, Zhao JQ, Bhadauria M, Nirala SK (2010) Pyridoxine mitigates cadmium induced hepatic cytotoxicity and oxidative stress. Environ Toxicol Pharmacol 30:169–174

    Article  PubMed  CAS  Google Scholar 

  29. Templeton DM, Liu Y (2010) Multiple roles of cadmium in cell death and survival. Chem Biol Interact 188:267–275

    Article  PubMed  CAS  Google Scholar 

  30. Urano S, Sato Y, Otonari T, Makabe S, Suzuki S, Ogata M, Endo T (1998) Aging and oxidative stress in neurodegeneration. Biofactors 7:103–112

    Article  PubMed  CAS  Google Scholar 

  31. Slyshenkov VS, Shevalye AA, Liopo AV, Wojtczak L (2002) Protective role of l-methionine against free radical damage of rat brain synaptosomes. Acta Biochim Pol 4:907–916

    Google Scholar 

  32. Liu TY, Chen Y, Wang ZY, Ji LL, Wang ZT (2010) Pyrrolizidine alkaloid isoline-induced oxidative injury in various mouse tissues. Exp Toxicol Pathol 3:251–257

    Article  Google Scholar 

  33. Jurczuk M, Brzoska MM, Moniuszko-Jakoniuk J, Gałażyn-Sidorczuk M, Kulikowska-Karpińska E (2004) Antioxidant enzymes activity and lipid peroxidation in liver and kidney of rats exposed to cadmium and ethanol. Food Chem Toxicol 42:429–438

    Article  PubMed  CAS  Google Scholar 

  34. Shagirtha K, Muthumani M, Prabu SM (2011) Melatonin abrogates cadmium induced oxidative stress related neurotoxicity in rats. Eur Rev Med Pharmacol Sci 15:1039–1050

    PubMed  CAS  Google Scholar 

  35. Shukla PK, Khanna VK, Ali MM, Maurya RR, Handa SS, Srimal RC (2002) Protective effect of acorus calamus against acrylamide induced neurotoxicity. Phytother Res 16:256–260

    Article  PubMed  Google Scholar 

  36. Carageorgiou H, Tzotzes V, Sideris A, Zarros A, Tsakiris S (2005) Cadmium effects on brain acetylcholinesterase activity and antioxidant status of adult rats: modulation by zinc, calcium and l-cysteine co-administration. Basic Clin Pharmacol Toxicol 97:320–324

    Article  PubMed  CAS  Google Scholar 

  37. Mata M, Fink DJ, Gainer H, Smith CB, Davidsen L, Savakis H, Schwartz WJ, Sokoloff L (1980) Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem 34:213–215

    Article  PubMed  CAS  Google Scholar 

  38. Hernandez R (1989) Brain Na+,K+-ATPase activity possibly regulated by a specific serotonin receptor. Brain Res 408:399–402

    Article  Google Scholar 

  39. Antonio MT, Corredor L, Leret ML (2003) Study of the activity of several brain enzymes like markers of the neurotoxicity induced by perinatal exposure to lead and/or cadmium. Toxicol Lett 143:331–340

    Article  PubMed  CAS  Google Scholar 

  40. Carageorgiou H, Tzotzes V, Pantos C, Mourouzis C, Zarros A, Tsakiris S (2004) In vivo and in vitro effects of cadmium on adult rat brain total antioxidant status, acetylcholinesterase Na+,K+-ATPase and Mg2+-ATPase activities: protection by L-cysteine. Basic Clin Pharmacol Toxicol 94:112–118

    Article  PubMed  CAS  Google Scholar 

  41. Zhu Y, Carvey PM, Ling Z (2006) Age-related changes in glutathione and glutathione-related enzymes in rat brain. Brain Res 1090:35–44

    Article  PubMed  CAS  Google Scholar 

  42. Tabassum H, Parvez S, Rehman H, Dev Banerjee B, Siemen D, Raisuddin S (2007) Nephrotoxicity and its prevention by taurine in tamoxifen induced oxidative stress in mice. Hum Exp Toxicol 26:509–518

    Article  PubMed  CAS  Google Scholar 

  43. Beyersmann D, Hechtenberg S (1997) Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol Appl Pharmacol 144:247–261

    Article  PubMed  CAS  Google Scholar 

  44. Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911

    Article  PubMed  CAS  Google Scholar 

  45. Karihtala P, Soini Y (2007) Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies. APMIS 115:81–103

    Article  PubMed  CAS  Google Scholar 

  46. Hart RP, Rose CS, Hamer RM (1989) Neuropsychological effects of occupational exposure to cadmium. J Clin Exp Neuropsychol 11:933–943

    Article  PubMed  CAS  Google Scholar 

  47. Webster WS, Valois AA (1981) The toxic effect of cadmium on the neonatal mouse CNS. J Neuropathol Exp Neurol 40:247–257

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Junaid Ahmad, Mr. Farhat Abbas Zaidi and Mr. Abdul Rehman for their excellent technical assistance.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhel Parvez.

Additional information

N.G. and S.C. contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govil, N., Chaudhary, S., Waseem, M. et al. Postnuclear Supernatant: An In Vitro Model for Assessing Cadmium-Induced Neurotoxicity. Biol Trace Elem Res 146, 402–409 (2012). https://doi.org/10.1007/s12011-011-9263-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9263-y

Keywords

Navigation