Skip to main content
Log in

Experimental Evidence that Methylmalonic Acid Provokes Oxidative Damage and Compromises Antioxidant Defenses in Nerve Terminal and Striatum of Young Rats

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Methylmalonic acidemia and propionic acidemia are organic acidemias biochemically characterized by predominant tissue accumulation of methylmalonic acid (MMA) and propionic acid (PA), respectively. Affected patients present predominantly neurological symptoms, whose pathogenesis is not yet fully established. In the present study we investigated the in vitro effects of MMA and PA on important parameters of lipid and protein oxidative damage and on the production of reactive species in synaptosomes from cerebrum of developing rats. Synaptosomes correspond to nerve terminals that have been used to investigate toxic properties of compounds on neuronal cells. The in vivo effects of intrastriatal injection of MMA and PA on the same parameters and on enzymatic antioxidant defenses, were also studied. MMA-induced in vitro and in vivo lipid peroxidation and protein oxidative damage. Furthermore, the lipid oxidative damage was attenuated or prevented, pending on the doses utilized, by the free radical scavengers α-tocopherol, melatonin and by the NMDA glutamate receptor antagonist MK-801, implying the involvement of reactive species and glutamate receptor activation in these effects. In addition, 2′,7′-dichlorofluorescein diacetate oxidation was significantly increased in synaptosomes by MMA, reinforcing that reactive species generation is elicited by this organic acid. We also verified that glutathione peroxidase activity was inhibited by intrastriatal MMA injection. In contrast, PA did not induce any significant effect on all parameters examined in vitro and in vivo, implying a selective action for MMA. The present data demonstrate that oxidative stress is induced by MMA in vitro in nerve terminals and in vivo in striatum, suggesting the participation of neuronal cells in MMA-elicited oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145

    Article  PubMed  CAS  Google Scholar 

  • Bonini MG, Rota C, Tomasi A, Mason RP (2006) The oxidation of 2′-7′-dichlorofluorescin to reactive oxygen species: a self-fulfilling prophesy? Free Radic Biol Med 40:968–975

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brismar J, Ozand PT (1994) CT and MR of the brain in disorders of the propionate and methylmalonate metabolism. AJNR Am J Neuroradiol 15:1459–1473

    PubMed  CAS  Google Scholar 

  • Brusque AM, Mello CF, Buchanan DN, Terracciano ST, Rocha MP, Vargas CR, Wannmacher CM, Wajner M (1999) Effect of chemically induced propionic academia on neurobehavioral development rats. Pharmacol Biochem Behav 64:529–534

    Article  PubMed  CAS  Google Scholar 

  • Brusque AM, Rotta LN, Tavares RG, Emanuelli T, Schwarzbold CV, Dutra-Filho CS, de Souza Wyse AT, Duval Wannmacher CM, Gomes de Souza DO, Wajner M (2001) Effects of methylmalonic and propionic acids on glutamate uptake by synaptosomes and synaptic vesicles and on glutamate release by synaptosomes from cerebral cortex of rats. Brain Res 920:194–201

    Article  PubMed  CAS  Google Scholar 

  • Brusque AM, Borba Rosa R, Schuck PF, Dalcin KB, Ribeiro CA, Silva CG, Wannmacher CM, Dutra-Filho CS, Wyse AT, Briones P, Wajner M (2002) Inhibition of the mitochondrial respiratory chain complex activities in rat cerebral cortex by methylmalonic acid. Neurochem Int 40:593–601

    Article  PubMed  CAS  Google Scholar 

  • Chakrapani A, Sivakumar P, McKiernan PJ, Leonard JV (2002) Metabolic stroke in methylmalonic acidemia five years after liver transplantation. J Pediatr 140:261–263

    Article  PubMed  Google Scholar 

  • Chandler RJ, Zerfas PM, Shanske S, Sloan J, Hoffmann V, DiMauro S, Venditti CP (2009) Mitochondrial dysfunction in mut methylmalonic acidemia. FASEB J 23:1252–1261

    Article  PubMed  CAS  Google Scholar 

  • Chemelli AP, Schocke M, Sperl W, Trieb T, Aichner F, Felber S (2000) Magnetic resonance spectroscopy (MRS) in five patients with treated propionic acidemia. J Magn Reson Imaging 11:596–600

    Article  PubMed  CAS  Google Scholar 

  • Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003) Protein carbonylation in human diseases. Trends Mol Med 9:169–176

    Article  PubMed  CAS  Google Scholar 

  • Davies MJ (2003) Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 305:761–770

    Article  PubMed  CAS  Google Scholar 

  • de Keyzer Y, Valayannopoulos V, Benoist JF, Batteux F, Lacaille F, Hubert L, Chrétien D, Chadefeaux-Vekemans B, Niaudet P, Touati G, Munnich A, de Lonlay P (2009) Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Pediatr Res 66:91–95

    Article  PubMed  Google Scholar 

  • de Mattos-Dutra A, Meirelles R, Bevilaqua da Rocha B, Kommers T, Wofchuk ST, Wajner M, Pessoa-Pureur R (2000) Methylmalonic and propionic acids increase the in vitro incorporation of 32P into cytoskeletal proteins from cerebral cortex of young rats through NMDA glutamate receptors. Brain Res 856:111–118

    Article  PubMed  Google Scholar 

  • de Mello CF, Begnini J, Jimenez-Bernal RE, Rubin MA, de Bastiani J, da Costa E Jr, Wajner M (1996) Intrastriatal methylmalonic acid administration induces rotational behavior and convulsions through glutamatergic mechanisms. Brain Res 721:120–125

    Article  PubMed  Google Scholar 

  • Deodato F, Boenzi S, Santorelli FM, Dionisi-Vici C (2006) Methylmalonic and propionic aciduria. Am J Med Genet C Semin Med Genet 142:104–112

    Google Scholar 

  • Fenton WA, Gravel RA, Rosenblatt DS (2001) In: Scriver CR, Beaudet AL, Valle AD, Sky WS (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill Inc, New York, pp 2165–2193

    Google Scholar 

  • Fighera MR, Bonini JS, de Oliveira TG, Frussa-Filho R, Dutra-Filho CS, Rubin MA, Mello CF (2003) GM1 ganglioside attenuates convulsions and thiobarbituric acid reactive substances production induced by the intrastriatal injection of methylmalonic acid. Int J Biochem Cell Biol 35:465–473

    Article  PubMed  CAS  Google Scholar 

  • Fontella FU, Pulrolnik V, Gassen E, Wannmacher CM, Klein AB, Wajner M, Dutra-Filho CS (2000) Propionic and L-methylmalonic acids induce oxidative stress in brain of young rats. Neuroreport 11:541–544

    Article  PubMed  CAS  Google Scholar 

  • Furian AF, Fighera MR, Oliveira MS, Ferreira AP, Fiorenza NG, de Carvalho Myskiw J, Petry JC, Coelho RC, Mello CF, Royes LF (2007) Methylene blue prevents methylmalonate-induced seizures and oxidative damage in rat striatum. Neurochem Int 50:164–171

    Article  PubMed  CAS  Google Scholar 

  • Gavazza M, Catalá A (2009) Relative efficacies of alpha-tocopherol, N-acetyl-serotonin, and melatonin in reducing non-enzymatic lipid peroxidation of rat testicular microsomes and mitochondria. Mol Cell Biochem 321(1–2):37–43

    Article  PubMed  CAS  Google Scholar 

  • Guajardo MH, Terrasa AM, Catalá A (2006) Lipid-protein modifications during ascorbate-Fe2+ peroxidation of photoreceptor membranes: protective effect of melatonin. J Pineal Res 41(3):201–210

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Measurement of reactive species. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Oxford University Press, Oxford, pp 268–340

    Google Scholar 

  • Harting I, Seitz A, Geb S, Zwickler T, Porto L, Lindner M, Kölker S, Höster F (2008) Looking beyond the basal ganglia: the spectrum of MRI changes in methylmalonic acidaemia. J Inherit Metab Dis 31:368–378

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann GF, Meler-Augenstein W, Stockler S, Surtees R, Rating D, Nyhan WL (1993) Physiology and pathophysiology of organic acids on cerebrospinal fluid. J Inherit Metab Dis 16:648–669

    Article  PubMed  CAS  Google Scholar 

  • Hörster F, Garbade SF, Zwickler T, Aydin HI, Bodamer OA, Burlina AB, Das AM, de Klerk JBC, Dionisi-Vici C, Geb S, Gökcay G, Guffon N, Maier EM, Morava E, Walter JH, Schwahn B, Wijburg FA, Lindner M, Grünewald S, Baumgartner MR, Kölker S (2009) Prediction of outcome in isolated methylmalonic acidurias: combined use of clinical and biochemical parameters. J Inherit Metab Dis 32:630–639

    Article  PubMed  Google Scholar 

  • Ischiropoulos H, Gow A, Thom SR, Kooy NW, Royall JA, Crow JP (1999) Detection of reactive nitrogen species using 2,7-dichlorodihydrofluorescein and dihydrorhodamine 123. Methods Enzymol 301:367–373

    Article  PubMed  CAS  Google Scholar 

  • Jafari M (2007) Dose- and time-dependent effects of sulfur mustard on antioxidant system in liver and brain of rat. Toxicology 231:30–39

    Article  PubMed  CAS  Google Scholar 

  • Kaplan P, Ficicioglu C, Mazur AT, Palmieri MJ, Berry GT (2006) Liver transplantation is not curative for methylmalonic acidopathy caused by methylmalonyl-CoA mutase deficiency. Mol Genet Metab 88:322–326

    Article  PubMed  CAS  Google Scholar 

  • Kölker S, Okunm JG (2005) Methylmalonic acid-an endogenous toxin? Cell Mol Life Sci 62:621–624

    Article  PubMed  Google Scholar 

  • Kölker S, Ahlemeyer B, Krieglstein J, Hoffmann GF (2000) Methylmalonic acid induces excitotoxic neuronal damage in vitro. J Inherit Metab Dis 23:355–358

    Article  PubMed  Google Scholar 

  • Kölker S, Sauer SW, Surtees RA, Leonard JV (2006) The aetiology of neurological of organic acidaemias—a role for the blood-brain barrier. J Inherit Metab Dis 29:701–704

    Article  PubMed  Google Scholar 

  • LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Williams JA, Stadman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  PubMed  CAS  Google Scholar 

  • LoPachin RM, Schwarez AI, Gaughan CL, Mansukhani S, Das S (2004) In vivo and in vitro effects of acrylamide on synaptosomal neurotransmitter uptake and release. Neurotoxicology 25:349–363

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Malfatti CRM, Royes LFF, Francescato L, Sanabria ERG, Rubin MA, Cavalheiro EA, Mello CF (2003) Intrastriatal methylmalonic acid administration induces convulsions and TBARS production, and alters Na+, K+-ATPase activity in the rat striatum and cerebral cortex. Epilepsia 44:761–767

    Article  PubMed  CAS  Google Scholar 

  • Malfatti CR, Perry ML, Schweigert ID, Muller AP, Paquetti L, Rigo FK, Fighera MR, Garrido-Sanabria ER, Mello CF (2007) Convulsions induced by methylmalonic acid are associated with glutamic acid decarboxylase inhibition in rats: a role for GABA in the seizures presented by methylmalonic academic patients? Neuroscience 146:1879–1887

    Article  PubMed  CAS  Google Scholar 

  • Manoli I, Venditti CP (2010) Methylmalonic acidemia. In: Pagon RA, Bird TC, Dolan CR, Stephens K (eds) GeneReviews (internet). University of Washington, Seattle, WA, 1993–2005 (updated 2010 Sep 28)

  • Marklund SL (1985) Pyrogallol autoxidation. In: Handbook for oxygen radical research. CRC Press, Boca Raton, FL, pp 243–247

  • Mc Guire PJ, Parikh A, Diaz GA (2009) Profiling of oxidative stress in patients with inborn errors of metabolism. Mol Genet Metab 98:173–180

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin BA, Nelson D, Silver JA, Erecinska M, Chesselet MF (1998) Methylmalonate toxicity in primary neuronal cultures. Neuroscience 86:279–290

    Article  PubMed  CAS  Google Scholar 

  • Myhre O, Andersen JM, Aarnes H, Fonnum F (2003) Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 65:1575–1582

    Article  PubMed  CAS  Google Scholar 

  • Nagarajan S, Enns GM, Millan MT, Winter S, Sarwal MM (2005) Management of methylmalonic acidaemia by combined liver-kidney transplantation. J Inherit Metab Dis 28:517–524

    Article  PubMed  CAS  Google Scholar 

  • Nicholls DG (2003) Bioenergetics and transmitter release in the isolated nerve terminal. Neurochem Res 28:1433–1441

    Article  PubMed  CAS  Google Scholar 

  • Nyhan WL, Gargus JJ, Boyle K, Selby R, Koch R (2002) Progressive neurologic disability in methylmalonic acidemia despite transplantation of the liver. Eur J Pediatr 161:377–379

    Article  PubMed  Google Scholar 

  • Ohashi T, Mizutani A, Murakami A, Kojo S, Ishii T, Taketani S (2002) Rapid oxidation of dichlorodihydrofluorescin with heme and hemoproteins: formation of the fluorescein is independent of the generation of reactive oxygen species. FEBS Lett 511:21–27

    Article  PubMed  CAS  Google Scholar 

  • Okun JG, Hörster F, Farkas LM, Feyh P, Hinz A, Sauer S, Hoffmann GF, Unsicker K, Mayatepek E, Kölker S (2002) Neurodegeneration in methylmalonic aciduria involves inhibition of complex II and the tricarboxylic acid cycle, and synergistically acting excitotoxicity. J Biol Chem 277:14674–14680

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Pettenuzzo LF, Schuck PF, Fontella F, Wannmacher CM, Wyse AT, Dutra-Filho CS, Netto CA, Wajner M (2002) Ascorbic acid prevents cognitive deficits caused by chronic administration of propionic acid to rats in the water maze. Pharmacol Biochem Behav 73:623–629

    Article  PubMed  CAS  Google Scholar 

  • Pettenuzzo LF, Ferreira GC, Schmidt AL, Dutra-Filho CS, Wyse AT, Wajner M (2006) Differential inhibitory effects of methylmalonic acid on respiratory chain complex activities in rat tissues. Int J Dev Neurosci 24:45–52

    Article  PubMed  CAS  Google Scholar 

  • Requejo R, Hurd TR, Costa NJ, Murphy MP (2010) Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage. FEBS J 277:1465–1480

    Article  PubMed  CAS  Google Scholar 

  • Ribas GS, Manfredini V, de Mari JF, Wayhs CY, Vanzin CS, Biancini GB, Sitta A, Deon M, Wajner M, Vargas CR (2010a) Reduction of lipid and protein damage in patients with disorders of propionate metabolism under treatment: a possible protective role of l-carnitine supplementation. Int J Dev Neurosci 28:127–132

    Article  PubMed  CAS  Google Scholar 

  • Ribas GS, Manfredini V, de Marco MG, Wayhs CY, Vanzin CS, Biancini GB, Wajner M, Vargas CR (2010b) Prevention by l-carnitine of DNA damage induced by propionic and l-methylmalonic acids in human peripheral leukocytes in vitro. Mutat Res 702:123–128

    PubMed  CAS  Google Scholar 

  • Ribeiro MC, de Avila DS, Schneider CY, Hermes FS, Furian AF, Oliveira MS, Rubin MA, Lehmann M, Krieglstein J, Mello CF (2005) Alpha-tocopherol protects against pentylenetetrazol- and methylmalonate-induced convulsions. Epilepsy Res 66:185–194

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro LR, Fighera MR, Oliveira MS, Furian AF, Rambo LM, Ferreira AP, Saraiva AL, Souza MA, Lima FD, Magni DV, Dezengrini R, Flores EF, Butterfield DA, Ferreira J, dos Santos AR, Mello CF, Royes LF (2009) Methylmalonate-induced seizures are attenuated in inducible nitric oxide synthase knockout mice. Int J Dev Neurosci 27:157–163

    Article  PubMed  CAS  Google Scholar 

  • Richard E, Jorge-Finnigan A, Garcia-Villoria J, Merinero B, Desviat LR, Gort L, Briones P, Leal F, Pérez-Cerdá C, Ribes A, Ugarte M, Pérez B; the MMACHC Working Group (Aguirre A, Andrés M, Badía J, Baldellou A, Couce ML, García-Carzola A, García-Silva MT, Lama R, Lopez-Mendoza S, Martínez-Pardo M, Olivares JL, Parini R, Parraga D, Pedrón C, Peña L, Pineda M, Pintos G, Porta R, Roselló P, Ruiz A, Toro M, Urbón A, Vernet A, Vilaseca MA, Yoldi ME) (2009) Genetic and cellular studies of oxidative stress in methylmalonic aciduria (MMA) cobalamin deficiency type C (cblC) with homocystinuria (MMACHC). Hum Mutat 30:1558–1566

    Google Scholar 

  • Richard E, Monteoliva L, Juarez S, Pérez B, Desviat LR, Ugarte M, Albar JP (2005) Quantitative analysis of mitochondrial protein expression in methylmalonic acidemia by two-dimensional difference gel electrophoresis. J Proteome Res 5:1602–1610

    Article  Google Scholar 

  • Richard E, Alvarez-Barrientos A, Pérez B, Desviat LR, Ugarte M (2007) Methylmalonic acidemia leads to increased production of reactive oxygen species and induction of apoptosis through the mitochondrial/caspase pathway. J Pathol 213:453–461

    Article  PubMed  CAS  Google Scholar 

  • Rigo FK, Pasquetti L, Malfatti CR, Fighera MR, Coelho RC, Petri CZ, Mello CF (2006) Propionic acid induces convulsions and protein carbonylation in rats. Neurosci Lett 408:151–154

    Article  PubMed  CAS  Google Scholar 

  • Royes LF, Fighera MR, Furian AF, Oliveira MS, da Silva LG, Malfatti CR, Schneider PH, Braga AL, Wajner M, Mello CF (2003) Creatine protects against the convulsive behavior and lactate production elicited by the intrastriatal injection of methylmalonate. Neuroscience 118:1079–1090

    Article  PubMed  CAS  Google Scholar 

  • Royes LF, Fighera MR, Furian AF, Oliveira MS, de Carvalho Myskiw J, Fiorenza NG, Frussa-Filho R, Mello CF (2005) Involvement of NO in the convulsive behavior and oxidative damage induced by intrastriatal injection of methylmalonate. Neurosci Lett 376:116–120

    Article  PubMed  CAS  Google Scholar 

  • Royes LF, Fighera MR, Furian AF, Oliveira MS, de Carvalho Myskiw J, Fiorenza NG, Petry JC, Coelho RC, Mello CF (2006) Effectiveness of creatine monohydrate on seizures and oxidative damage induced by methylmalonate. Pharmacol Biochem Behav 83:136–144

    Article  PubMed  CAS  Google Scholar 

  • Royes LF, Fighera MR, Furian AF, Oliveira MS, Fiorenza NG, Petry JC, Coelho RC, Mello CF (2007) The role of nitric oxide on the convulsive behavior and oxidative stress induced by methylmalonate: an electroencephalographic and neurochemical study. Epilepsy Res 73:228–237

    Article  PubMed  CAS  Google Scholar 

  • Sadowska-Woda I, Wójcik N, Karowicz-Bilińska A, Bieszczad-Bedrejczuk E (2010) Effect of selected antioxidants in beta-cyfluthrin-induced oxidative stress in human erythrocytes in vitro. Toxicol In Vitro 24(3):879–884

    Article  PubMed  CAS  Google Scholar 

  • Sauer SW, Okun JG, Fricker G, Mahringer A, Müller I, Crnic LR, Mühlhausen C, Hoffmann GF, Höster F, Goodman SI, Harding CO, Koeller DM, Kölker S (2006) Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood-brain barrier constitute a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency. J Neurochem 97:899–910

    Article  PubMed  CAS  Google Scholar 

  • Sauer SW, Opp S, Mahringher A, Kaminki MM, Thiel C, Okun JG, Fricker G, Morath MA, Kölker S (2010) Glutaric aciduria type I and methylmalonic aciduria: simulation of cerebral import models of the blood-brain barrier and the choroid plexus. Biochim Biophys Acta 1802:552–560

    PubMed  CAS  Google Scholar 

  • Shevell MI, Matiaszuk N, Ledley FD, Rosenblatt DS (1993) Varying neurological phenotypes among mut 0 and mut patients with methylmalonilCoA mutase deficiency. Am J Med Genet 45:619–624

    Article  PubMed  CAS  Google Scholar 

  • Singh P, Jain A, Kaur G (2004) Impact of hypoglycemia and diabetes on CNS: correlation of mitochondrial oxidative stress with DNA damage. Mol Cell Biochem 260(1–2):153–159

    Article  PubMed  CAS  Google Scholar 

  • Springer JE, Azbill RD, Carlson SL (1998) A rapid and sensitive assay for measuring mitochondrial metabolic activity in isolated neural tissue. Brain Res Protoc 2:259–263

    Article  CAS  Google Scholar 

  • Stasiak M, Zasada K, Lewinski A, Karbownik-Lewinska M (2010) Melatonin restores the basal level of lipid peroxidation in rat tissues exposed to potassium bromate in vitro. Neuroendocrinol Lett 31(3):363–369

    PubMed  CAS  Google Scholar 

  • Stellmer F, Keyser B, Burckhardt BC, Koepsell H, Streichert T, Glatzel M, Jabs S, Thiem J, Herdering W, Koeller DM, Goodman SI, Lukacs Z, Ullrich K, Burckhardt G, Braulke T, Mühlhausen C (2007) 3-Hydroxyglutaric acid is transported via the sodium-dependent dicarboxylate transporter NaDC3. J Mol Med 85:763–770

    Article  PubMed  CAS  Google Scholar 

  • Stuss M, Wiktorska JA, Sewerynek E (2010) N-acetylserotonin reduces lipopolysaccharide-induced lipid peroxidation in vitro more effectively than melatonin. Neuroendocrinol Lett 31(4):489–496

    PubMed  CAS  Google Scholar 

  • Surtees RAH, Matthews EE, Leonard JV (1992) Neurologic outcome of propionic acidemia. Pediatr Neurol 8:333–337

    Article  PubMed  CAS  Google Scholar 

  • Treacy E, Arbour L, Chessex P, Graham G, Kasprzak L, Casey K, Bell L, Mamer O, Scriver CR (1996) Glutathione deficiency as a complication of methylmalonic acidemia: response to high doses of ascorbate. J Pediatr 129:445–448

    Article  PubMed  CAS  Google Scholar 

  • Trindade VM, Brusque AM, Raasch JR, Pettenuzzo LF, Rocha HP, Wannmacher CM, Wajner M (2002) Ganglioside alterations in the central nervous system of rats chemically injected with methylmalonic and propionic acids. Metab Brain Dis 17:93–102

    Article  PubMed  CAS  Google Scholar 

  • van’t Hoff W, McKiernan PJ, Surtees RA, Leonard JV (1999) Liver transplantation for methylmalonic acidemia. Eur J Pediatr 2:S70–S74

    Article  Google Scholar 

  • Wajner M, Coelho JC (1997) Neurological dysfunction in methylmalonic acidemia is probably related to the inhibitory effect of methylmalonate on brain energy production. J Inherit Metab Dis 20:761–768

    Article  PubMed  CAS  Google Scholar 

  • Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–332

    Article  PubMed  CAS  Google Scholar 

  • Wolf B, Hsia YE, Sweetman L, Gravel R, Harris DJ, Nyhan WL (1981) Propionic acidemia: a clinical update. J Pediatr 99:835–846

    Article  PubMed  CAS  Google Scholar 

  • Wyse AT, Brusque AM, Silva CG, Streck EL, Wajner M, Wannmacher CM (1998) Inhibition of Na+, K+-ATPase from rat brain cortex by propionic acid. Neuroreport 9:1719–1721

    Article  PubMed  CAS  Google Scholar 

  • Wyse AT, Streck EL, Barros SV, Brusque AM, Zugno AI, Wajner M (2000) Methylmalonate administration decreases Na+, K+-ATPase activity in cerebral cortex of rats. Neuroreport 11:2331–2334

    Article  PubMed  CAS  Google Scholar 

  • Yagi K (1998) Simple procedure for specific assay of lipid hydroperoxides in serum or plasma. Methods Mol Biol 108:107–110

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from CNPq, PRONEX II, FAPERGS, PROPESQ/UFRGS, FINEP research grant Rede Instituto Brasileiro de Neurociência (IBN-Net) # 01.06.0842-00 and Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT-EN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacir Wajner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, C.G., Borges, C.G., Seminotti, B. et al. Experimental Evidence that Methylmalonic Acid Provokes Oxidative Damage and Compromises Antioxidant Defenses in Nerve Terminal and Striatum of Young Rats. Cell Mol Neurobiol 31, 775–785 (2011). https://doi.org/10.1007/s10571-011-9675-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-011-9675-4

Keywords

Navigation