Skip to main content

Advertisement

Log in

PCR-based Gene Synthesis, Molecular Cloning, High Level Expression, Purification, and Characterization of Novel Antimicrobial Peptide, Brevinin-2R, in Escherichia Coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Brevinin-2R, a member of a new family of antimicrobial peptides isolated from the skin of Rana ridibunda, displays antimicrobial activity against bacteria and fungi. In this study, we have used an assembly PCR method for the fast and extremely accurate synthesis of the brevinin-2R gene. A total of six primers were assembled in a single step PCR, and the assembly was then amplified by PCR to produce the final gene. The synthetic gene was cloned into the pET32a (+) vector to allow the expression of brevinin-2R as a Trx fusion protein in Escherichia coli. The results indicated that the expression level of the fusion protein could reach up to 25% of the total cell proteins. The expression products could be easily purified by Ni-NTA chromatography and released from the fusion protein by factor Xa protease. The peptide displayed antimicrobial activity similar to that of the purified brevinin that was reported earlier. This method allows the fast synthesis of a gene that optimized the overexpression in the E. coli system and production of sufficiently large amounts of peptide for functional and structural characterizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  1. Boman, H. G. (1995). Peptide antibiotics and their role in innate immunity. Annual Review of Immunology, 13, 61–92.

    Article  CAS  Google Scholar 

  2. Martin, E., Ganz, T., & Lehrer, R. I. (1995). Defensins and other endogenous peptide antibiotics of vertebrates. Journal of Leukocyte Biology, 58, 128–136.

    CAS  Google Scholar 

  3. Sima, P., Trebichavsky, I., & Sigler, K. (2003). Mammalian antibiotic peptides. Folia Microbiologica, 48, 123–137.

    Article  CAS  Google Scholar 

  4. Noga, E. J., & Silphaduang, U. (2003). Piscidins: a novel family of peptide antibiotics from Wsh. Drug News & Perspectives, 16, 87–92.

    Article  CAS  Google Scholar 

  5. Ganz, T. (2003). Defensins: antimicrobial peptides of innate immunity. Nature Reviews. Immunology, 3, 710–720.

    Article  CAS  Google Scholar 

  6. Devine, D. A., & Hancock, R. E. (2002). Cationic peptides: distribution and mechanisms of resistance. Current Pharmaceutical Design, 8, 703–714.

    Article  CAS  Google Scholar 

  7. ZasloV, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415, 389–395.

    Article  CAS  Google Scholar 

  8. Fales-Williams, A. J., Brogden, K. A., Huffman, E., Gallup, J. M., & Ackermann, M. R. (2002). Cellular distribution of anionic antimicrobial peptide in normal lung and during acute pulmonary inflammation. Veterinary Pathology, 39, 706–711.

    Article  CAS  Google Scholar 

  9. Fales-Williams, A. J., Gallup, J. M., Ramirez-Romero, R., Brogden, K. A., & Ackermann, M. R. (2002). Increased anionic peptide distribution and intensity during progression and resolution of bacterial pneumonia. Clinical and Diagnostic Laboratory Immunology, 9, 28–32.

    Article  CAS  Google Scholar 

  10. Lai, R., Liu, H., Hui, L. W., & Zhang, Y. (2002). an anionic antimicrobial peptide from toad Bombina maxima. Biochemical and Biophysical Research Communications, 295, 796–799.

    Article  CAS  Google Scholar 

  11. Hancock, R. E., & Rozek, A. (2002). Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiology Letters, 206, 143–149.

    Article  CAS  Google Scholar 

  12. Nizet, V., Ohtake, T., & Lauth, X. (2001). Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature, 414, 454–457.

    Article  CAS  Google Scholar 

  13. Montecalvo, M. A. (2003). Ramoplanin: a novel antimicrobial agent with the potential to prevent vancomycin-resistant enterococcal infection in high-risk patients. Journal of Antimicrobial Chemotherapy, 51, S31–S35.

    Article  CAS  Google Scholar 

  14. Giles, F. J., Redman, R., Yazji, S., & Bellm, L. (2002). Iseganan HCl: a novel antimicrobial agent. Expert Opinion on Investigational Drugs, 11, 1161–1170.

    Article  CAS  Google Scholar 

  15. Valore, E. V., & Ganz, T. (1997). Laboratory production of antimicrobial peptides in native conformation. Methods in Molecular Biology, 78, 115–131.

    CAS  Google Scholar 

  16. Asoodeh, A., Naderi-Manesh, H., Mirshahi, M., & Ranjbar, B., (2004). Purification and characterization of an antibacterial , antifungal and non hemolytic peptide from Rana Ridibunda. Journal of Sciences, Islamic Republic of Iran, 15, 303–309.

    Google Scholar 

  17. Guerdoux-Jamet, P., Henaut, A., Nitschke, P., Risler, J. L., & Danchin, A. (1997). Using codon usage to predict genes origin: is the Escherichia coli outer membrane a patchwork of products from different genomes? DNA Research, 4, 257–265.

    Article  CAS  Google Scholar 

  18. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  19. Lehrer, R. I., Rosenman, Jackson, M., Eisenhauer, P. (1991). Ultra sensitive assay for endogenous antimicrobial polypeptide. Journal of Immunological Methods, 137, 167–173.

    Article  CAS  Google Scholar 

  20. Lazarus, L. H., & Attila, M. (1993). The toad, ugly and venomous, wears yet a precious jewel in his skin. Progress in Neurobiology, 41, 473–507.

    Article  CAS  Google Scholar 

  21. Wang, G., Sun, G., Tang, W., Pan, X. (1994). The application of traditional Chinese medicine to the management of hepatic cancerous pain. Journal of Traditional Chinese Medicine, 14, 132–138.

    CAS  Google Scholar 

  22. Erspamer, V. (1994). Bioactive secretions of the integument. In H. Heatwole & GT Barthalmus (Eds.), Amphibian biology, the integument, vol. 1. Chipping Norton: Surrey Beatty & Sons.

    Google Scholar 

  23. Withers-Martinez, C., Carpenter, E. P., Hackett, F., Ely, B., Sajid, M., Grainger, M., & Blackman, M. J. (1999). PCR-based gene synthesis as an efficient approach for expression of the A+T-rich malaria genome. Protein Engineering, 12, 1113–1120.

    Article  CAS  Google Scholar 

  24. Lee, J. H., Kim, J. H., & Hwang, S. W. (2000). High-level expression of antimicrobial peptide mediated by a fusion partner reinforcing formation of inclusion bodies. Biochemical and Biophysical Research Communications, 277, 575–580.

    Article  CAS  Google Scholar 

  25. Lee, J. H., Minn, H., Park, C. B., & Kim, S. C. (1998). Acid peptide-mediated expression of the antimicrobial peptide Buforin II as tandem repeats in Escherichia coli. Protein Expression and Purification, 12, 53–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to show their gratitude toward the research council of Tarbiat Modares University and the Center of High Tech. of the Ministry of Industries and Minings for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Naderi-Manesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehrnejad, F., Naderi-Manesh, H., Ranjbar, B. et al. PCR-based Gene Synthesis, Molecular Cloning, High Level Expression, Purification, and Characterization of Novel Antimicrobial Peptide, Brevinin-2R, in Escherichia Coli . Appl Biochem Biotechnol 149, 109–118 (2008). https://doi.org/10.1007/s12010-007-8024-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8024-z

Keywords

Navigation