Skip to main content

Advertisement

Log in

An Overview of the Recent Developments on Fructooligosaccharide Production and Applications

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Over the past years, many researchers have suggested that deficiencies in the diet can lead to disease states and that some diseases can be avoided through an adequate intake of relevant dietary components. Recently, a great interest in dietary modulation of the human gut has been registered. Prebiotics, such as fructooligosaccharides (FOS), play a key role in the improvement of gut microbiota balance and in individual health. FOS are generally used as components of functional foods, are generally regarded as safe (generally recognized as safe status—from the Food and Drug Administration, USA), and worth about 150€ per kilogram. Due to their nutrition- and health-relevant properties, such as moderate sweetness, low carcinogenicity, low calorimetric value, and low glycemic index, FOS have been increasingly used by the food industry. Conventionally, FOS are produced through a two-stage process that requires an enzyme production and purification step in order to proceed with the chemical reaction itself. Several studies have been conducted on the production of FOS, aiming its optimization toward the development of more efficient production processes and their potential as food ingredients. The improvement of FOS yield and productivity can be achieved by the use of different fermentative methods and different microbial sources of FOS-producing enzymes and the optimization of nutritional and culture parameter; therefore, this review focuses on the latest progresses in FOS research such as its production, functional properties, and market data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antošová, M., Polakovič, M., Slovinská, M., Madlová, A., Illeová, V., & Báleš, V. (2002). Effect of sucrose concentration and cultivation time on batch production of fructosyltransferase by Aureobasidium pullulans CCY 27-1-1194. Chemical Papers, 56, 394–399.

    Google Scholar 

  • Antošová, M., Illeová, V., Vandáková, M., Družkovská, A., & Polakovič, M. (2008). Chromatographic separation and kinetic properties of fructosyltransferase from Aureobasidium pullulans. Journal of Biotechnology, 135, 58–63.

    Google Scholar 

  • Baba, S., Ohta, A., Ohtsuki, M., Takizawa, T., Adachi, T., & Hara, H. (1996). Fructooligosaccharides stimulate the absorption of magnesium from the hindgut in rats. Nutrition Research, 16, 657–666.

    CAS  Google Scholar 

  • Balasubramaniem, A. K., Nagarajan, K. V., & Paramasamy, G. (2001). Optimization of media for β-fructofuranosidase production by Aspergillus niger in submerged and solid state fermentation. Process Biochemistry, 36, 1241–1247.

    CAS  Google Scholar 

  • Bekers, M., Laukevics, J., Upite, D., Kaminska, E., Vigants, A., Viesturs, U., et al. (2002). Fructooligosaccharide and levan producing activity of Zymomonas mobilis extracellular levansucrase. Process Biochemistry, 38, 701–706.

    CAS  Google Scholar 

  • Belghith, K. S., Dahecha, I., Belghith, H., & Mejdouba, H. (2012). Microbial production of levansucrase for synthesis of fructooligosaccharides and levan. International Journal of Biological Macromolecules, 50, 451–458.

    CAS  Google Scholar 

  • Bennett, N., Greco, D. S., Peterson, M. E., Kirk, C., Mathes, M., & Fettman, M. J. (2006). Comparison of a low carbohydrate-low fiber diet and a moderate carbohydrate high fiber diet in the management of feline diabetes mellitus. Journal of Feline Medicine & Surgery, 8, 73–84.

    Google Scholar 

  • Brenda—The Comprehensive Enzyme Information System. (2005). Cologne University BioInformatics Center, Germany. Retrieved 3 May 2005 from http://www.brenda.uni-koeln.de/.

  • Brighenti, F., Benini, L., Del Rio, D., Casiraghi, C., Pellegrini, N., Scazzina, F., et al. (2006). Colonic fermentation of indigestible carbohydrates contributes to the second-meal effect. American Journal of Clinical Nutrition, 83, 817–822.

    CAS  Google Scholar 

  • Bugaut, M., & Bentéjac, M. (1993). Biological effects of short-chain fatty acids in nonruminant mammals. Annual Review of Nutrition, 13, 217–241.

    CAS  Google Scholar 

  • Burkitt, D. P. (1969). Related disease—related cause? The Lancet, 2, 1229–1231.

    CAS  Google Scholar 

  • Chaudhri, O. B., Salem, V., Murphy, K. G., & Bloom, S. R. (2008). Gastrointestinal satiety signals. Annual Review of Physiology, 70, 239–255.

    CAS  Google Scholar 

  • Chávez, F. P., Rodriguez, L., Díaz, J., Delgado, J. M., & Cremata, J. A. (1997). Purification and characterization of an invertase from Candida utilis: comparison with natural and recombinant yeast invertases. Journal of Biotechnology, 53, 67–74.

    Google Scholar 

  • Chen, W. C. (1995). Production of β-fructofuranosidase by Aspergillus japonicus in batch and fed-batch cultures. Biotechnology Letters, 17, 1291–1294.

    CAS  Google Scholar 

  • Chen, W.-C., & Liu, C.-H. (1996). Production of β-fructofuranosidase by Aspergillus japonicus. Enzyme and Microbial Technology, 18, 153–160.

    CAS  Google Scholar 

  • Chen, H.-L., Lu, Y.-H., Lin, J., & Ko, L.-Y. (2000). Effects of fructooligosaccharide on bowel function and indicators of nutritional status in constipated elderly men. Nutrition Research, 20, 1725–1733.

    CAS  Google Scholar 

  • Chiang, C. J., Lee, W. C., Sheu, D. C., & Duan, K. J. (1997). Immobilization of β-fructofuranosidases from Aspergillus on methacrylamide-based polymeric beads for production of fructooligosaccharides. Biotechnology Progress, 13, 577–582.

    CAS  Google Scholar 

  • Clydesdale, F. (2004). Functional foods: opportunities & challenges. Food Technology, 58, 35–40.

    Google Scholar 

  • Crittenden, R. G., & Playne, M. J. (1996). Production, properties and applications of food grade oligosaccharides. Trends in Food Science & Technology, 7, 353–361.

    CAS  Google Scholar 

  • Crittenden, R. G., & Playne, M. J. (2002). Purification of food-grade oligosaccharides using immobilised cells of Zymomonas mobilis. Applied Microbiology and Biotechnology, 58, 297–302.

    Google Scholar 

  • De Preter, V., Hamer, H. M., Windey, K., & Verbeke, K. (2011). The impact of pre- and/or probiotics on human colonic metabolism: does it affect human health? Molecular Nutrition & Food Research, 55, 46–57.

    Google Scholar 

  • Delgado, G. T. C., Tamashiro, W. M. S. C., Junior, M. R. M., Moreno, Y. M. F., & Pastore, G. M. (2011). The putative effects of prebiotics as immunomodulatory agents. Food Research International, 44, 3167–3173.

    CAS  Google Scholar 

  • Delzenne, N. M., & Kok, N. (2001). Effects of fructans-type prebiotics on lipid metabolism. The American Journal of Clinical Nutrition, 73(Suppl), 456S–458S.

    CAS  Google Scholar 

  • Delzenne, N. M., Daubioul, C., Neyrinck, A., Lasa, M., & Taper, H. S. (2002). Inulin and oligofructose modulate lipid metabolism in animals: review of biochemical events and future prospects. British Journal of Nutrition, 87(Suppl), S255–S259.

    CAS  Google Scholar 

  • Dhake, A. B., & Patil, M. B. (2007). Effect of substrate feeding on production of fructosyltransferase by Penicillium purpurogenum. Brazilian Journal of Microbiology, 38, 194–199.

    Google Scholar 

  • Dominguez, A., Nobre, C., Rodrigues, L. R., Peres, A. M., Torres, D., Rocha, I., et al. (2012). New improved method for fructooligosaccharides production by Aureobasidium pullulans. Carbohydrate Polymers, 89, 1174–1179.

    CAS  Google Scholar 

  • Druce, M. R., Small, C. J., & Bloom, S. R. (2004). Minireview: gut peptides regulating satiety. Endocrinology, 145, 2660–2665.

    CAS  Google Scholar 

  • Fiordaliso, M., Kok, N., Desager, J. P., Goethals, F., Deboyser, D., Roberfroid, M., et al. (1995). Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids, 30, 163–167.

    CAS  Google Scholar 

  • Fujishima, M., Sakai, H., Ueno, K., Takahashi, N., Onodera, S., Benkeblia, N., et al. (2005). Purification and characterization of a fructosyltransferase from onion bulbs and its key role in the synthesis of fructo-oligosaccharides in vivo. New Phytologist, 165, 513–524.

    CAS  Google Scholar 

  • Ganaie, M. A., Gupta, U. S., & Kango, N. (2013). Screening of biocatalysts for transformation of sucrose to fructooligosaccharides. Journal of Molecular Catalysis B: Enzymatic, 97, 12–17.

    CAS  Google Scholar 

  • Ghazi, I., De Segura, A. G., Fernández-Arrojo, L., Alcalde, M., Yates, M., Rojas-Cervantes, M. L., et al. (2005). Immobilisation of fructosyltransferase from Aspergillus aculeatus on epoxy-activated Sepabeads EC for the synthesis of fructo-oligosaccharides. Journal of Molecular Catalysis B: Enzymatic, 35, 19–27.

    CAS  Google Scholar 

  • Ghazi, I., Fernández-Arrojo, L., Garcia-Arellano, H., Ferrer, M., Ballesteros, A., & Plou, F. J. (2007). Purification and kinetic characterization of a fructosyltransferase from Aspergillus aculeatus. Journal of Biotechnology, 128, 204–211.

    CAS  Google Scholar 

  • Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. Journal of Nutrition, 125, 1401–1412.

    CAS  Google Scholar 

  • Gibson, G. R., Probert, H. M., Van Loo, J., Rastall, R. A., & Roberfroid, M. (2004). Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition Research Reviews, 17, 259–275.

    CAS  Google Scholar 

  • Glore, S. R., Van Treeck, D., Knehans, A. W., & Guild, M. (1994). Soluble fiber and serum lipids: a literature review. Journal of the American Dietetic Association, 94, 425–436.

    CAS  Google Scholar 

  • Gomes, A. J. P. (2009). Optimização da Produção de Frutooligossacáridos por Aspergillus. Unpublished master's thesis. University of Minho, Braga, Portugal.

  • Goulas, A., Tzortzis, G., & Gibson, G. R. (2007). Development of a process for the production and purification of α- and β-galactooligosaccharides from Bifobacterium bifidum NCIMB 41171. International Dairy Journal, 17, 648–656.

    CAS  Google Scholar 

  • Gudiel-Urbano, M., & Goñi, I. (2002). Effect of fructooligosaccharides on nutritional parameters and mineral bioavailability in rats. Journal of the Science of Food and Agriculture, 82, 913–917.

    CAS  Google Scholar 

  • Hayashi, S., Nonoguchi, M., Takasaki, Y., Ueno, H., & Imada, K. (1992). Purification and properties of β-fructofuranosidase from Aureobasidium sp. ATCC 20524. Journal of Industrial Microbiology, 7, 251–256.

    CAS  Google Scholar 

  • Hernández, O., Ruiz-Matute, A. I., Olano, A., Moreno, F. J., & Sanz, M. L. (2009). Comparison of fractionation techniques to obtain prebiotic galactooligosaccharides. International Dairy Journal, 19, 531–536.

    Google Scholar 

  • Hölker, U., Höfer, M., & Lenz, J. (2004). Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology and Biotechnology, 64, 175–186.

    Google Scholar 

  • Hosono, A., Ozawa, A., Kato, R., Ohnishi, Y., Nakanishi, Y., Kimura, T., et al. (2003). Dietary fructooligosaccharides induce immunoregulation of intestinal IgA secretion by murine Peyer’s patch cells. Bioscience, Biotechnology, and Biochemistry, 67, 758–764.

    CAS  Google Scholar 

  • Howlett J (Ed.) (2008) Functional foods—from science to health and claims. ILSI Europe—Concise Monograph Series, Brussels, Belgium.

  • Jackson, K. G., Taylor, G. R. L., Clohessy, A. M., & Williams, C. M. (1999). The effect of the daily intake of inulin on fasting lipid, insulin and glucose concentrations in middle-aged men and women. British Journal of Nutrition, 82, 23–30.

    CAS  Google Scholar 

  • Jedrzejczak-Krzepkowska, M., Tkaczuk, K. L., & Bielecki, S. (2011). Biosynthesis, purification and characterization of β-fructofuranosidase from Bifidobacterium longum KN29.1. Process Biochemistry, 46, 1963–1972.

    CAS  Google Scholar 

  • Kim, Y. S., Tsa, O. D., Morita, A., & Bella, A. (1982). Effect of sodium butyrate and three human colorectal adenocarcinoma cell lines in culture. Falk Symposium, 31, 317–323.

    CAS  Google Scholar 

  • Koops, A. J., & Jonker, H. H. (1994). Purification and characterization of the enzymes of fructan biosynthesis in tubers of Helianthus tuberosus “Columbia”: I.Fructan: fructan fructosyl transferase. Journal of Experimental Botany, 45, 1623–1631.

    Google Scholar 

  • Korzenik, J. R., & Podolsky, D. K. (2006). Evolving knowledge and therapy of inflammatory bowel disease. Nature Reviews Drug Discovery, 5, 197–209.

    CAS  Google Scholar 

  • Kunz, C., & Rudloff, S. (2006). Health promoting aspects of milk oligosaccharides. International Dairy Journal, 16, 1341–1346.

    CAS  Google Scholar 

  • L’Hocine, L., Wang, Z., Jiang, B., & Xu, S. (2000). Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. Journal of Biotechnology, 81, 73–84.

    Google Scholar 

  • Lateef, A., Oloke, J. K., & Prapulla, S. G. (2007). Purification and partial characterization of intracellular fructosyltransferase from a novel strain of Aureobasidium pullulans. Turkish Journal of Biology, 31, 147–154.

    CAS  Google Scholar 

  • Lee, W.-C., Chiang, C.-J., & Tsai, P.-Y. (1999). Kinetic modeling of fructo-oligosaccharide production catalyzed by immobilized β-fructofuranosidase. Industrial & Engineering Chemistry Research, 38, 2564–2570.

    CAS  Google Scholar 

  • Levrat, M. A., Favier, M. L., Moundras, C., Rémésy, C., Demigné, C., & Morand, C. (1994). Role of dietary propionic acid and bile acid excretion in the hypocholesterolemic effects of oligosaccharides in rats. Journal of Nutrition, 124, 531–538.

    CAS  Google Scholar 

  • Lim, C. C., Ferguson, L. R., & Tannock, G. W. (2005a). Dietary fibres as “prebiotics”: implications for colorectal cancer. Molecular Nutrition & Food Research, 49, 609–619.

    Google Scholar 

  • Lim, J. S., Park, M. C., Lee, J. H., Park, S. W., & Kim, S. W. (2005b). Optimization of culture medium and conditions for Neo-fructooligosaccharides production by Penicillium citrinum. European Food Research and Technology, 221, 639–644.

    CAS  Google Scholar 

  • Lin, T.-J., & Lee, Y.-C. (2008). High-content fructooligosaccharides production using two immobilized microorganisms in an internal-loop airlift bioreactor. Journal of the Chinese Institute of Chemical Engineers, 39, 211–217.

    CAS  Google Scholar 

  • Macfarlane, G. T., Steed, H., & Macfarlane, S. (2008). Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. Journal of Applied Microbiology, 104, 305–344.

    CAS  Google Scholar 

  • Madlová, A., Antošová, M., Baráthová, M., Polakovič, M., Stefuca, V., & Báles, V. (1999). Screening of microorganisms for transfructosylating activity and optimization of biotransformation of sucrose to fructooligosaccharides. Chemical Papers, 53, 366–369.

    Google Scholar 

  • Madlová, A., Antošová, M., Polakovič, M., & Báles, V. (2000). Thermal stability of fructosyltransferase from Aureobasidium pullulans. Chemical Papers, 54, 339–344.

    Google Scholar 

  • Maiorano, A. E., Piccoli, R. M., Silva, E. S., & Rodrigues, M. F. A. (2008). Microbial production of fructosyltransferases for synthesis of pre-biotics. Biotechnology Letters, 30, 1867–1877.

    CAS  Google Scholar 

  • Manning, T. S., & Gibson, G. R. (2004). Prebiotics. Best Practice & Research Clinical Gastroenterology, 18, 287–298.

    Google Scholar 

  • Menrad, K. (2003). Market and marketing of functional food in Europe. Journal of Food Engineering, 56, 181–188.

    Google Scholar 

  • Metz, B., & Kossen, N. W. F. (1977). Biotechnology review: the growth of the molds in the form of pellets, a literature. Biotechnology and Bioengineering, 19, 781–799.

    CAS  Google Scholar 

  • Mishra, S., & Mishra, H. N. (2013). Effect of synbiotic interaction of fructooligosaccharide and probiotics on the acidification profile, textural and rheological characteristics of fermented soy milk. Food and Bioprocess Technology, 6, 3166–3176.

    CAS  Google Scholar 

  • Munjal, U., Glei, M., Pool-Zobel, B. L., & Scharlau, D. (2009). Fermentation products of inulin-type fructans reduce proliferation and induce apoptosis in human colon tumour cells of different stages of carcinogenesis. British Journal of Nutrition, 27, 1–9.

    Google Scholar 

  • Mussatto, S. I., & Mancilha, I. M. (2007). Non-digestible oligosaccharides: a review. Carbohydrate Polymers, 68, 587–597.

    CAS  Google Scholar 

  • Mussatto, S. I., & Teixeira, J. A. (2010). Increase in the fructooligosaccharides yield and productivity by solid-state fermentation with Aspergillus japonicus using agro-industrial residues as support and nutrient source. Biochemical Engineering Journal, 53, 154–157.

    CAS  Google Scholar 

  • Mussatto, S. I., Aguilar, C. N., Rodrigues, L. R., & Teixeira, J. A. (2009). Colonization of Aspergillus japonicus on synthetic materials and application to the production of fructooligosaccharides. Carbohydrate Research, 344, 795–800.

    CAS  Google Scholar 

  • Mussatto, S. I., Prata, M. B., Rodrigues, L. R., & Teixeira, J. A. (2012). Production of fructooligosaccharides and β-fructofuranosidase by batch and repeated batch fermentation with immobilized cells of Penicillium expansum. European Food Research and Technology, 235, 13–22.

    CAS  Google Scholar 

  • Nemukula, A., Mutanda, T., Wilhelmi, B. S., & Whiteley, C. G. (2009). Response surface methodology: synthesis of short chain fructooligosaccharides with a fructosyltransferase from Aspergillus aculeatus. Bioresource Technology, 100, 2040–2045.

    CAS  Google Scholar 

  • Nguyen, Q. D., Mattes, F., Hoschke, Á., Rezessy-Szabó, J., & Bhat, M. K. (1999). Production, purification and identification of fructooligosaccharides produced by β-fructofuranosidase from Aspergillus niger IMI 303386. Biotechnology Letters, 21, 183–186.

    CAS  Google Scholar 

  • Nguyen, Q. D., Rezessy-Szabó, J. M., Bhat, M. K., & Hoschke, Á. (2005). Purification and some properties of β-fructofuranosidase from Aspergillus niger IMI303386. Process Biochemistry, 40, 2461–2466.

    CAS  Google Scholar 

  • Nilsson, A. C., Ostman, E. M., Holst, J. J., & Bjorck, I. M. E. (2008). Including indigestible carbohydrates in the evening meal of healthy subjects improves glucose tolerance, lowers inflammatory markers, and increases satiety after a subsequent standardized breakfast. The Journal of Nutrition, 138, 732–739.

    CAS  Google Scholar 

  • Nishizawa, K., Nakajima, M., & Nabetani, H. (2001). Kinetic study on transfructosylation by β-fructofuranosidase from Aspergillus niger ATCC 20611 and availability of a membrane reactor for fructooligosaccharide production. Food Science and Technology Research, 7, 39–44.

    CAS  Google Scholar 

  • Nobre, C., Teixeira, J.A., & Rodrigues, L.R. (2013). New trends and technological challenges in the industrial production and purification of fructo-oligosaccharides. Critical Reviews in Food Science and Nutrition. doi:10.1080/10408398.2012.697082.

  • Pandey, A. (2003). Solid-state fermentation. Biochemical Engineering Journal, 13, 81–84.

    CAS  Google Scholar 

  • Park, J.-P., Oh, T.-K., & Yun, J.-W. (2001). Purification and characterization of a novel transfructosylating enzyme from Bacillus macerans EG-6. Process Biochemistry, 37, 471–476.

    Google Scholar 

  • Pierre, F., Perrin, P., Champ, M., Bornet, F., Meflah, K., & Menanteau, J. (1997). Short-chain fructo-oligosaccharides reduce the occurrence of colon tumors and develop gut-associated lymphoid tissue in Min mice. Cancer Research, 57, 225–228.

    CAS  Google Scholar 

  • Piñeiro, M., Asp, N. G., Reid, G., Macfarlane, S., Morelli, L., Brunser, O., et al. (2008). FAO Technical meeting on prebiotics. Journal of Clinical Gastroenterology, 42(Suppl 3), S156–S159.

    Google Scholar 

  • Playne, M. J., & Crittenden, R. G. (2004). Prebiotics from lactose, sucrose, starch, and plant polysaccharides. In J.-R. Neeser & J. B. German (Eds.), Bioprocesses and biotechnology for functional foods and nutraceuticals (pp. 99–135). New York: Marcel Dekker.

    Google Scholar 

  • Prata, M. B., Mussatto, S. I., Rodrigues, L. R., & Teixeira, J. A. (2010). Fructooligosaccharide production by Penicillium expansum. Biotechnology Letters, 32, 837–840.

    CAS  Google Scholar 

  • Qiang, X., YongLie, C., & QianBing, W. (2009). Health benefit application of functional oligosaccharides. Carbohydrate Polymers, 77, 435–441.

    Google Scholar 

  • Raschka, L., & Daniel, H. (2005). Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone, 37, 728–735.

    CAS  Google Scholar 

  • Risso, F. V. A., Mazutti, M. A., Treichel, H., Costa, F., Maugeri, F., & Rodrigues, M. I. (2012). Comparison between systems for synthesis of fructooligosaccharides from sucrose using free inulinase from Kluyveromyces marxianus NRRL Y-7571. Food and Bioprocess Technology, 5, 331–337.

    CAS  Google Scholar 

  • Roberfroid, M. (1993). Dietary fiber, inulin, and oligofructose: a review comparing their physiological effects. Critical Reviews in Food Science and Nutrition, 33, 103–148.

    CAS  Google Scholar 

  • Roberfroid, M. B. (2000a). Defining functional foods. In G. Gibson & C. Williams (Eds.), Functional foods: trends and prospects (pp. 9–25). Cambridge: Woodhead Publishing.

    Google Scholar 

  • Roberfroid, M. B. (2000b). Prebiotics and probiotics: are they functional foods? The American Journal of Clinical Nutrition, 71(Suppl), 1682S–1687S.

    CAS  Google Scholar 

  • Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., et al. (2010). Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 104(Suppl), S1–S63.

    CAS  Google Scholar 

  • Saad, N., Delattre, C., Urdaci, M., Schmitter, J. M., & Bressollier, P. (2013). An overview of the last advances in probiotic and prebiotic field. LWT—Food Science and Technology, 50, 1–16.

    CAS  Google Scholar 

  • Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2004a). Production of fructo-oligosaccharides by fructosyl transferase from Aspergillus oryzae CFR 202 and Aureobasidium pullulans CFR 77. Process Biochemistry, 39, 753–758.

    CAS  Google Scholar 

  • Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2004b). Production of fructosyl transferase by Aspergillus oryzae CFR 202 in solid-state fermentation using agricultural by-products. Applied Microbiology and Biotechnology, 65, 530–537.

    CAS  Google Scholar 

  • Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005a). Fructooligosaccharide production using fructosyl transferase obtained from recycling culture of Aspergillus oryzae CFR 202. Process Biochemistry, 40, 1085–1088.

    CAS  Google Scholar 

  • Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005b). Maximization of fructooligosaccharide production by two stage continuous process and its scale up. Journal of Food Engineering, 68, 57–64.

    Google Scholar 

  • Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005c). Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends in Food Science & Technology, 16, 442–457.

    CAS  Google Scholar 

  • Sanz, M. L., Polemis, N., Morales, V., Corzo, N., Drakoularakou, A., Gibson, G. R., et al. (2005). In vitro investigation into the potential prebiotic activity of honey oligosaccharides. Journal of Agricultural and Food Chemistry, 53, 2914–2921.

    CAS  Google Scholar 

  • Scheppach, W., & Weiler, F. (2004). The butyrate story: old wine in new bottles? Current Opinion in Clinical Nutrition Metabolic Care, 7, 563–567.

    Google Scholar 

  • Schley, P. D., & Field, J. C. (2002). The immune-enhancing effects of dietary fibres and prebiotics. British Journal of Nutrition, 87, 221–230.

    Google Scholar 

  • Sheu, D. C., Lio, P. J., Chen, S. T., Lin, C. T., & Duan, K. J. (2001). Production of fructooligosaccharides in high yield using a mixed enzyme system of β-fructofuranosidase and glucose oxidase. Biotechnology Letters, 23, 1499–1503.

    CAS  Google Scholar 

  • Sheu, D.-C., Duan, K.-J., Cheng, C.-Y., Bi, J.-L., & Chen, J.-Y. (2002). Continuous production of high-content fructooligosaccharides by a complex cell system. Biotechnology Progress, 18, 1282–1286.

    CAS  Google Scholar 

  • Shimizu, M., & Hachimura, S. (2011). Gut as a target for functional food. Trends in Food Science & Technology, 22, 646–650.

    CAS  Google Scholar 

  • Shin, H. T., Baig, S. Y., Lee, S. W., Suh, D. S., Kwon, S. T., Lim, Y. B., & Lee, J. H. (2004a). Production of fructo-oligosaccharides from molasses by Aureobasidium pullulans cells. Bioresource Technology, 93, 59–62.

  • Shin, H. T., Park, K. M., Kang, K. H., Oh, D. J., Lee, S. W., Baig, S. Y., et al. (2004b). Novel method for cell immobilization and its application for production of oligosaccharides from sucrose. Letters in Applied Microbiology, 38, 176–179.

    CAS  Google Scholar 

  • Shiomi, N. (1982). Purification and characterisation of 1F-fructosyltransferase from the roots of asparagus (Asparagus officinalis L.). Carbohydrate Research, 99, 157–169.

    CAS  Google Scholar 

  • Simmering, R., & Blaut, M. (2001). Pro- and prebiotics—the tasty guardian angels? Applied Microbiology and Biotechnology, 55, 19–28.

    CAS  Google Scholar 

  • Singh, R. S., & Singh, R. P. (2010). Production of fructooligosaccharides from inulin by endoinulinases and their prebiotic potential. Food Technology and Biotechnology, 48, 435–450.

    CAS  Google Scholar 

  • Siró, I., Kápolna, E., Kápolna, B., & Lugasi, A. (2008). Functional food. Product development, marketing and consumer acceptance—a review. Appetite, 51, 456–467.

    Google Scholar 

  • Straathof, A. J. J., Kieboom, A. P. G., & Bekkum, H. (1986). Invertase-catalysed fructosyl transfer in concentrated solutions of sucrose. Carbohydrate Research, 146, 154–159.

    CAS  Google Scholar 

  • Szajewska, H. (2010). Probiotics and prebiotics in preterm infants: where are we? Where are we going? Early Human Development, 86, S81–S86.

    Google Scholar 

  • Tokunaga, T., Oku, T., & Hosoya, N. (1986). Influence of chronic intake of new sweetener fructooligosaccharide (Neosugar) on growth and gastrointestinal function of the rat. Journal of Nutritional Science and Vitaminology (Tokyo), 32, 111–121.

    CAS  Google Scholar 

  • van Hijum, S. A. F. T., van Geel-Schutten, G. H., Rahaoui, H., van der Maarel, M. J. E. C., & Dijkhuizen, L. (2002). Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides. Applied and Environmental Microbiology, 68, 4390–4398.

    Google Scholar 

  • Vandáková, M., Platková, Z., Antošová, M., Báleš, V., & Polakovič, M. (2004). Optimization of cultivation conditions for production of fructosyltransferase by Aureobasidium pullulans. Chemical Papers, 58, 15–22.

    Google Scholar 

  • Voragen, A. G. J. (1998). Technological aspects of functional food-related carbohydrates. Trends in Food Science & Technology, 9, 328–335.

    CAS  Google Scholar 

  • Wallis, G. L. F., Hemming, F. W., & Peberdy, J. F. (1997). Secretion of two β-fructofuranosidases by Aspergillus niger growing in sucrose. Archives of Biochemistry and Biophysics, 345, 214–222.

    CAS  Google Scholar 

  • Wang, L.-M., & Zhou, H.-M. (2006). Isolation and identification of a novel A. japonicus JN19 producing β-fructofuranosidase and characterization of the enzyme. Journal of Food Biochemistry, 30, 641–658.

    Google Scholar 

  • Yamamoto, Y., Takahashi, Y., Kawano, M., Iizuka, M., Matsumoto, T., Saeki, S., et al. (1999). In vitro digestibility and fermentability of levan and its hypocholesterolemic effects in rats. The Journal of Nutritional Biochemistry, 10, 13–18.

    CAS  Google Scholar 

  • Yoon, S. H., Mukerjea, R., & Robyt, J. F. (2003). Specificity of yeast (Saccharomyces cerevisiae) in removing carbohydrates by fermentation. Carbohydrate Research, 338, 1127–1132.

    CAS  Google Scholar 

  • Yoshikawa, J., Amachi, S., Shinoyama, H., & Fujii, T. (2006). Multiple β-fructofuranosidases by Aureobasidium pullulans DSM2404 and their roles in fructooligosaccharide production. FEMS Microbiology Letters, 265, 159–163.

    CAS  Google Scholar 

  • Yoshikawa, J., Amachi, S., Shinoyama, H., & Fujii, T. (2007). Purification and some properties of β-fructofuranosidase I formed by Aureobasidium pullulans DSM 2404. Journal of Bioscience and Bioengineering, 103, 491–493.

    CAS  Google Scholar 

  • Yoshikawa, J., Amachi, S., Shinoyama, H., & Fujii, T. (2008). Production of fructooligosaccharides by crude enzyme preparations of β-fructofuranosidase from Aureobasidium pullulans. Biotechnology Letters, 30, 535–539.

    CAS  Google Scholar 

  • Yu Wang, M. A., Tao Zeng, M. D., Shu-e Wang, M. A., Wei Wang, M. A., Qian Wang, M. A., & Hong-Xia Yu, M. A. (2010). Fructo-oligosaccharides enhance the mineral absorption and counteract the adverse effects of phytic acid in mice. Nutrition, 26, 305–311.

    Google Scholar 

  • Yun, J. W. (1996). Fructooligosaccharides—occurrence, preparation, and application. Enzyme and Microbial Technology, 19, 107–117.

    CAS  Google Scholar 

  • Yun, J. W., & Song, S. K. (1993). The production of high-content fructo-oligosaccharides from sucrose by the mixed-enzyme system of fructosyltransferase and glucose oxidase. Biotechnology Letters, 15, 573–576.

    Google Scholar 

  • Yun, J. W., Kim, D. H., & Song, S. K. (1997). Enhanced production of fructosyltransferase and glucosyltransferase by substrate-feeding cultures of Aureobasidium pullulans. Journal of Fermentation and Bioengineering, 84, 261–263.

    CAS  Google Scholar 

  • Ziemer, C. J., & Gibson, G. R. (1998). An overview of probiotics, prebiotics and synbiotics in the functional food concept: perspectives and future strategies. International Dairy Journal, 8, 473–479.

    CAS  Google Scholar 

  • Zuccaro, A., Götze, S., Kneip, S., Dersch, P., & Seibel, J. (2008). Tailor-made fructooligosaccharides by a combination of substrate and genetic engineering. ChemBioChem, 9, 143–149.

    CAS  Google Scholar 

Download references

Acknowledgments

Agência de Inovação (AdI)—Project BIOLIFE reference PRIME 03/347. Ana Dominguez acknowledges Fundação para a Ciência e a Tecnologia, Portugal, for her PhD grant reference SFRH/BD/23083/2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Luísa Dominguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dominguez, A.L., Rodrigues, L.R., Lima, N.M. et al. An Overview of the Recent Developments on Fructooligosaccharide Production and Applications. Food Bioprocess Technol 7, 324–337 (2014). https://doi.org/10.1007/s11947-013-1221-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1221-6

Keywords

Navigation