Skip to main content
Log in

Rehydration Capacity of Chilean Papaya (Vasconcellea pubescens): Effect of Process Temperature on Kinetic Parameters and Functional Properties

  • Communication
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Slabs of Chilean papaya hot air-dried at 60 °C were rehydrated at 20, 40, 60, and 80 °C to study the influence of process temperature on mass transfer kinetics during rehydration. Diffusive and empirical models were selected to simulate the experimental rehydration curves. All models parameters showed dependence with temperature, thus activation energy could be estimated according to an Arrhenius-type equation. Among the applied models, Weibull provided the best fit for each rehydration curve based on the statistical tests RMSE, SSE, and chi-square. According to these results, this model could be used to estimate the rehydration time of Chilean papaya. In addition, rehydration ratio and water-holding capacity were analyzed. Both indices showed a decrease with increasing rehydration temperature indicating modification of the papaya cell structure due to thermal treatment which resulted in a reduction of the rehydration ability, in particular at high rehydration temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

a w :

Water activity (−)

A :

Parameter of Eq. 3 (in minutes gram d.m. per gram water)

B :

Parameter of Eq. 3 (in grams d.m. per gram water)

C :

Parameter of Eq. 5 (in grams water per gram d.m)

D :

Parameter of Eq. 5 (in minutes·gram water per gram d.m.)

D eff :

Effective moisture diffusivity (in meters per second)

α :

Shape parameter of Weibull model (−)

β :

Scale parameter of Weibull model (min)

λ :

Parameter of Eq. 5 (−)

E a :

Activation energy (in kilojoules per mole)

ϕ o :

Arrhenius factor (in square meters per second)

L :

Thickness half (in meters)

MR:

Moisture ratio (−)

N :

Number of data

R :

Universal gas constant (8.314 J mol−1 K−1)

RR:

Rehydration ratio (in grams absorbed water per gram d.m.)

WHC:

Water-holding capacity (in grams retained water per gram water)

t :

Process time (in minutes)

T :

Absolute temperature (in Kelvin)

X wt :

Sample moisture content (in grams water per gram d.m.)

X wo :

Initial sample moisture content (in grams water per gram d.m.)

X d :

Sample moisture content after the drying process (in grams water per gram d.m.)

X eq :

Equilibrium sample moisture content (in grams water per gram d.m.)

X r :

Sample moisture content after rehydration (in grams water per gram d.m.)

W r :

Sample weight after the rehydration process (in grams)

W d :

Sample weight after the drying process (in grams)

W l :

Weight of the drained liquid after centrifugation (in grams)

z :

Number of constants

exp:

Experimental

cal:

Calculated

:

Infinite

References

  • AOAC (1990). Oficial method of Análisis, Association of Oficial analytical Chemists no. 934.06., (15th edn), Washington.

  • Aversa, M., Curcio, S., Calabrò, V., & Iorio, G. (2009). Experimental evaluation of quality parameters during drying of carrot samples. Food and Bioprocess Technology. doi:10.1007/s11947-009-0280-1.

  • Bilbao-Sáinz, C., & Fito, Andrés A. (2005). Hydration kinetics of dried apple as affected by drying conditions. Journal of Food Engineering, 68(3), 369–376.

    Article  Google Scholar 

  • Chang, X. L., Wang, Ch, Feng, Y., & Liu, Z. (2006). Effects of heat treatments on the stabilities of polysaccharides substances and barbaloin in gel juice from Aloe vera Miller. Journal of Food Engineering, 75(2), 245–251.

    Article  CAS  Google Scholar 

  • Cunningham, S. E., Mcminn, W. A. M., Magee, T., & Richardson, P. S. (2007). Modeling water absorption of pasta during soaking. Journal of Food Engineering, 82(4), 600–607.

    Article  Google Scholar 

  • Cunningham, S. E., Mcminn, W. A. M., Magee, T. R. A., & Richardson, P. S. (2008). Experimental study of rehydration kinetics of potato cylinders. Food of Bioproducts Processing, 86(1), 15–24.

    Article  Google Scholar 

  • Garcia-Pascual, P., Sanjuan, N., Melis, R., & Mulet, A. (2006). Morchella esculenta (morel) rehydration process modeling. Journal of Food Engineering, 72(4), 346–353.

    Article  Google Scholar 

  • INDAP (2009). Instituto Nacional del Desarrollo Agropecuario (National Institute of Farming Development), La Serena, Chile. http://www.indap.cl. Accessed January 2011.

  • Kaptso, K. G., Njintang, Y. N., Komnek, A. E., Hounhouigan, J., Scher, J., & Mbofung, C. M. F. (2008). Physical properties and rehydration kinetics of two varieties of cowpea (Vigna unguiculata) and bambara groundnuts (Voandzeia subterranea) seeds. Journal of Food Engineering, 86(1), 91–99.

    Article  CAS  Google Scholar 

  • Kaymak-Ertekin, E. (2002). Drying and rehydration kinetics of green and red peppers. Journal of Food Science, 67(1), 168–175.

    Article  CAS  Google Scholar 

  • Krokida, M. K., & Marinos-Kouris, D. (2003). Rehydration kinetics of dehydrated products. Journal of Food Engineering, 57(1), 1–7.

    Article  Google Scholar 

  • Krokida, M. K., & Maroulis, Z. B. (2001). Structural properties of dehydrated products during rehydration. International Journal of Food Science and Technology, 36(5), 529–538.

    Article  CAS  Google Scholar 

  • Lee, K. T., Farid, M., & Nguang, S. K. (2006). The mathematical modelling of the rehydration characteristics of fruits. Journal of Food Engineering, 72(1), 16–23.

    Article  Google Scholar 

  • Lemus-Mondaca, R., Betoret, N., Vega-Galvéz, A., & Lara-Aravena, E. (2009a). Dehydration characteristics of papaya (Carica pubenscens): determination of equilibrium moisture content and diffusion coefficient. Journal of Food Process Engineering, 32(5), 645–663.

    Article  Google Scholar 

  • Lemus-Mondaca, R., Miranda, M., Andres, A., Briones, V., Villalobos, R., & Vega-Gálvez, A. (2009b). Effect of osmotic pretreatment on hot air drying kinetics and quality of Chilean papaya (Carica pubescens). Drying Technology, 27(10), 1105–1115.

    Article  CAS  Google Scholar 

  • Marabi, A., & Saguy, I. S. (2009). Rehydration and reconstitution of foods. In C. Ratti (Ed.), Advances in food dehydration. Boca Raton: CRC Press.

    Google Scholar 

  • Marabi, A., Livings, S., Jacobson, M., & Saguy, I. S. (2003). Normalized Weibull distribution for modelling rehydration of food particulates. European Food Research Technology, 217, 311–318.

    Article  CAS  Google Scholar 

  • Maskan, M. (2002). Effect of processing on hydration kinetics of three wheat products of same variety. Journal of Food Engineering, 52(4), 337–341.

    Article  Google Scholar 

  • Miranda, M., Vega-Gálvez, A., García, P., Di Scala, K., Shi, J., Xue, S., et al. (2010). Effect of temperature on structural properties of Aloe vera (Aloe barbadensis Miller) gel and Weibull distribution for modelling drying process. Food and Bioproducts Processing, 88(2–3), 138–144.

    Article  CAS  Google Scholar 

  • Moreira, R., Chelco, F., Chaguri, L., & Fernandes, C. (2008). Water absorption, texture, and color kinetics of air-dried chestnuts during rehydration. Journal of Food Engineering, 86(4), 584–594.

    Article  Google Scholar 

  • Moyano, P. C., Vega, R. E., Bunger, A., Carreton, J., & Osorio, F. A. (2002). Effect of combined processes of osmotic dehydration and freezing on papaya preservation. Food Science and Technology Internacional, 8(5), 295–301.

    Google Scholar 

  • Peleg, M. (1998). An empirical model for the description of moisture sorption curves. Journal of Food Science, 53(4), 1216–1219.

    Article  Google Scholar 

  • Planinić, M., Velić, D., Tomas, S., Bilić, M., & Bucić, A. (2005). Modelling of drying and rehydration of carrots using Peleg's model. European Food Research Technology, 221(3–4), 446–451.

    Article  Google Scholar 

  • Resio, A. C., Aguerre, R. J., & Suárez, C. (2006). Hydration kinetics of amaranth grain. Journal of Food Engineering, 72(3), 247–253.

    Article  CAS  Google Scholar 

  • Solomon, W. K. (2007). Hydration kinetics of lupin (Lupinus albus) seeds. Journal of Food Processing Engineering, 30(1), 119–130.

    Article  Google Scholar 

  • Uribe, E., Vega-Gálvez, A., Di Scala, K., Oyanadel, R., Saavedra, J., & Miranda, M. (2009). Characteristics of convective drying of pepino fruit (Solanum muricatum Ait.): application of Weibull distribution. Food and Bioprocess Technology. doi:10.1007/s11947-009-0230-y.

  • Van Droogenbroeck, B., Breyne, P., Goetghebeur, P., Romeijn-Peeters, E., Kyndl, T., & Gheysen, G. (2002). AFLP analysis of genetic relationships among papaya and its wild relatives (Caricaceae) from Ecuador. Theoretical and Applied Genetics, 105, 289–298.

    Article  Google Scholar 

  • Vega-Gálvez, A., Notte-Cuello, E., Lemus-Mondaca, R., Zura, L., & Miranda, M. (2009). Mathematical modelling of mass transfer during rehydration process of Aloe vera (Aloe barbadensis Miller). Food and Bioproducts Processing, 87, 254–260.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support provided by the Research Department of the Universidad de La Serena (DIULS) for publication of this research. Mr. Roberto Lemus-Mondaca acknowledges the financial support given by the National Doctoral Fellowship of the Advanced Human Capital Program CONICYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Di Scala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zura, L., Uribe, E., Lemus-Mondaca, R. et al. Rehydration Capacity of Chilean Papaya (Vasconcellea pubescens): Effect of Process Temperature on Kinetic Parameters and Functional Properties. Food Bioprocess Technol 6, 844–850 (2013). https://doi.org/10.1007/s11947-011-0677-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0677-5

Keywords

Navigation