Skip to main content

Advertisement

Log in

Post-triptan era for the treatment of acute migraine

  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

There now is one realized and several attractive targets for the treatment of acute attacks of migraine that will follow and augment the use of serotonin 5-HT1B/1D receptor agonists, the triptans. Calcitonin gene-related peptide (CGRP) receptor blockade recently has been shown to be an effective acute antimigraine strategy; therefore, blockade of CGRP release by inhibition of trigeminal nerves would seem a logical approach. A number of targets are reviewed in this article including serotonin 5-HT1F and 5-HT1D receptors, adenosine A1 receptors, nociceptin, vanilloid TRPV1 receptors, and anandamide CB1 receptors. Development of one or more such compound offers the exciting prospect of new non-vasoconstrictor treatments for migraine and cluster headache.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Goadsby PJ: The pharmacology of headache. Prog Neurobiol 2000, 62:509–525. A general review of headache pharmacology.

    PubMed  CAS  Google Scholar 

  2. Doenicke A, Siegel E, Hadoke M, Perrin VL: Initial clinical study of AH25086B (5-HT1-like agonist) in the acute treatment of migraine. Cephalalgia 1987, 7:437–438.

    Google Scholar 

  3. Doenicke A, Brand J, Perrin VL: Possible benefit of GR43175,a novel 5-HT1-like receptor agonist, for the acute treatment of severe migraine. Lancet 1988, I:1309–1311.

    Google Scholar 

  4. Dodick D, Lipton RB, Martin V, et al.: Consensus Statement: cardiovascular safety profile of triptans (5-HT1B/1D agonists) in the acute treatment of migraine. Headache 2004, 44:414–425.

    PubMed  Google Scholar 

  5. Ferrari MD, Roon KI, Lipton RB, Goadsby PJ: Oral triptans (serotonin, 5-HT1B/1D agonists) in acute migraine treatment: a meta-analysis of 53 trials. Lancet 2001, 358:1668–1675.

    PubMed  CAS  Google Scholar 

  6. Kimball RW, Friedman AP, Vallejo E: Effect of serotonin in migraine patients. Neurology 1960, 10:107–111.

    PubMed  CAS  Google Scholar 

  7. Lance JW, Anthony M, Hinterberger H: The control of cranial arteries by humoral mechanisms and its relation to the migraine syndrome. Headache 1967, 7:93–102.

    PubMed  CAS  Google Scholar 

  8. Humphrey PP, Feniuk W, Perren MJ, et al.: Serotonin and migraine. Ann N Y Acad Sci 1990, 600:587–598.

    PubMed  CAS  Google Scholar 

  9. Lance JW, Fine RD, Curran DA: An evaluation of methysergide in the prevention of migraine and other vascular headaches. Med J Aust 1963, 1:814–818.

    Google Scholar 

  10. Johnston BM, Saxena PR: The effect of ergotamine on tissue blood flow and the arteriovenous shunting of radioactive microspheres in the head. Br J Pharmacol 1978, 63:541–549.

    PubMed  CAS  Google Scholar 

  11. Goadsby PJ, Lipton RB, Ferrari MD: Migraine: current understanding and treatment. N Engl J Med 2002, 346:257–270.,An overview of migraine pathophysiology and current management.

    PubMed  CAS  Google Scholar 

  12. Goadsby PJ, Edvinsson L: Neurovascular control of the cerebral circulation. In Cerebral Blood Flow and Metabolism, edn 2. Edited by Edvinsson L, Krause DN. Philadelphia: Lippincott Williams & Wilkins; 2002:172–188.

    Google Scholar 

  13. De Vries P, Villalon CM, Saxena PR: Pharmacological aspects of experimental headache models in relation to acute antimigraine therapy. Eur J Pharmacol 1999, 375:61–74. Excellent review of the therapeutic pharmacology of migraine.

    PubMed  Google Scholar 

  14. Goadsby PJ, Kaube H: Animal models of headache. In The Headaches, edn 2. Edited by Olesen J, Tfelt-Hansen P, Welch KM. Philadelphia: Lippincott Williams & Wilkins; 2000:195–202.

    Google Scholar 

  15. Saxena PR, De Boer MO: Pharmacology of antimigraine drugs. J Neurol 1991, 238:S28-S35.

    PubMed  Google Scholar 

  16. Saxena PR, Cairo-Rawlins WI: Presynaptic inhibition by ergotamine of the responses to cardioaccelerator nerve stimulations in the cat. Eur J Pharmacol 1979, 58:305–312.

    PubMed  CAS  Google Scholar 

  17. Markowitz S, Saito K, Moskowitz MA: Neurogenically mediated leakage of plasma proteins occurs from blood vessels in dura mater but not brain. J Neurosci 1987, 7:4129–4136.

    PubMed  CAS  Google Scholar 

  18. Markowitz S, Saito K, Moskowitz MA: Neurogenically mediated plasma extravasation in dura mater: effect of ergot alkaloids: a possible mechanism of action in vascular headache. Cephalalgia 1988, 8:83–91.

    PubMed  CAS  Google Scholar 

  19. Williamson DJ, Hargreaves RJ, Hill RG, Shepheard SL: Sumatriptan inhibits neurogenic vasodilation of dural blood vessels in the anaesthetized rat: intravital microscope studies. Cephalalgia 1997, 17:525–531.

    PubMed  CAS  Google Scholar 

  20. Kaube H, Hoskin KL, Goadsby PJ: Activation of the trigeminovascular system by mechanical distension of the superior sagittal sinus in the cat. Cephalalgia 1992, 12:133–136.

    PubMed  CAS  Google Scholar 

  21. Branchek T, Archa JE: Recent advances in migraine therapy. In Central Nervous System Disease. Edited by Robertson DW. Burlington, MA: Academic Press; 1997:1–10.

    Google Scholar 

  22. Phebus LA, Johnson KW, Zgombick JM, et al.: Characterization of LY334370 as a pharmacological tool to study 5HT1F receptor-binding affinities, brain penetration, and activity in the neurogenic dural inflammation model of migraine. Life Sci 1997, 61:2117–2126.

    PubMed  CAS  Google Scholar 

  23. Johnson KW, Schaus JM, Durkin MM, et al.: 5-HT1F receptor agonists inhibit neurogenic dural inflammation in guinea pigs. Neuroreport 1997, 8:2237–2240.

    Article  PubMed  CAS  Google Scholar 

  24. Cohen ML, Schenck K: 5-Hydroxytryptamine(1F) receptors do not participate in vasoconstriction: lack of vasoconstriction to LY344864, a selective serotonin (1F) receptor agonist in rabbit saphenous vein. J Pharmacol Exp Ther 1999, 290:935–939.

    PubMed  CAS  Google Scholar 

  25. Razzaque Z, Heald MA, Pickard JD, et al.: Vasoconstriction in human isolated middle meningeal arteries: determining the contribution of 5-HT1B- and 5-HT1F-receptor activation. Br J Clin Pharmacol 1999, 47:75–82.

    PubMed  CAS  Google Scholar 

  26. Goldstein DJ, Roon KI, Offen WW, et al.: Selective serotonin 1F (5-HT(1F)) receptor agonist LY334370 for acute migraine: a randomized, controlled trial. Lancet 2001, 358:1230–1234.

    PubMed  CAS  Google Scholar 

  27. Castro ME, Pascual J, Romon T, et al.: Differential distribution of [3H]sumatriptan binding sites (5-HT1B, 5-HT1D and 5-HT1F receptors) in human brain: focus on brain stem and spinal cord. Neuropharmacology 1997, 36:535–542.

    PubMed  CAS  Google Scholar 

  28. Pascual J, Arco CD, Romon T, et al.: [3H] Sumatriptan binding sites in human brain: regional-dependent labeling of 5HT1D and 5HT1F receptors. Eur J Pharmacol 1996, 295:271–274.

    Google Scholar 

  29. Waeber C, Moskowitz MA: [3H]sumatriptan labels both 5-HT1D and 5HT1F receptor bindings sites in the guinea pig brain: an autoradiographic study. Naunyn Schmiedebergs Arch Pharmacol 1995, 352:263–275.

    PubMed  CAS  Google Scholar 

  30. Fugelli A, Moret C, Fillion G: Autoradiographic localization of 5-HT1E and 5-HT1F binding sites in rat brain: effect of serotonergic lesioning. J Recept Signal Transduct Res 1997, 17:631–645.

    Article  PubMed  CAS  Google Scholar 

  31. Bouchelet I, Cohen Z, Case B, Hamel E: Differential expression of sumatriptan-sensitive 5-hydroxytryptamine receptors in human trigeminal ganglia and cerebral blood vessels. Mol Pharmacol 1996, 50:219–223.

    Google Scholar 

  32. Mitsikostas DD, Sanchez del Rio M, Moskowitz MA, Waeber C: Both 5-HT1B and 5-HT1F receptors modulate c-fos expression within rat trigeminal nucleus caudalis. Eur J Pharmacol 1999, 369:271–277.

    PubMed  CAS  Google Scholar 

  33. Goadsby PJ, Classey JD: Evidence for 5-HT1B, 5-HT1D and 5-HT1F receptor inhibitory effects on trigeminal neurons with craniovascular input. Neuroscience 2003, 122:491–498.

    PubMed  CAS  Google Scholar 

  34. Maneesi S, Akerman S, Lasalandra MP, et al.: Electron microscopic demonstration of pre- and postsynaptic 5-HT1D and 5-HT1F receptor immunoreactivity (IR) in the rat trigeminocervical complex (TCC): new therapeutic possibilities for the triptans. Cephalalgia 2004, 24:148.

    Google Scholar 

  35. Waeber C, Cutrer FM, Yu XJ, Moskowitz MA: The selective 5HT1D receptor agonist U-109291 blocks dural plasma extravasation and c-fos expression in the trigeminal nucleus caudalis. Cephalalgia 1997, 17:401.

    Google Scholar 

  36. Potrebic S, Ahan AH, Skinner K, et al.: Peptidergic nociceptors of both trigeminal and dorsal root ganglia express serotonin 1D receptors: implications for the selective antimigraine action of triptans. J Neurosci 2003, 23:10988–10997.

    PubMed  CAS  Google Scholar 

  37. Ahn AH, Fields HL, Basbaum AI: The triptan receptor 5HT1D is dynamically regulated in the central terminal of primary afferents in models of pain. Neurology 2004, 62:A440-A441.

    Google Scholar 

  38. Pregenzer JF, Alberts GL, Block JH, et al.: Characterization of ligand-binding properties of the 5-HT1D receptors cloned from chimpanzee, gorilla, and rhesus monkey in comparison with those from the human and guinea pig receptors. Neurosci Lett 1997, 235:117–120.

    PubMed  CAS  Google Scholar 

  39. Gomez-Mancilla B, Cutler NR, Leibowitz MT, et al.: Safety and efficacy of PNU-142633, a selective 5-HT1D agonist, in patients with acute migraine. Cephalalgia 2001, 21:727–732.

    PubMed  CAS  Google Scholar 

  40. Pregenzer JF, Alberts GL, Im WB, et al.: Differential pharmacology between the guinea-pig and the gorilla 5-HT1D receptor as probed with isochromans (5-HT1D-selective ligands). Br J Pharmacol 1999, 127:468–472.

    PubMed  CAS  Google Scholar 

  41. McCall RB, Huff R, Chio CL, et al.: Preclinical studies characterizing the anti-migraine and cardiovascular effects of the selective 5-HT 1D receptor agonist PNU-142633. Cephalalgia 2002, 22:799–806.

    PubMed  CAS  Google Scholar 

  42. Fleishaker JC, Pearson LK, Knuth DW, et al.: Pharmacokinetics and tolerability of a novel 5-HT1D agonist, PNU-142633F. Int J Clin Pharmacol Ther 1999, 37:487–492.

    PubMed  CAS  Google Scholar 

  43. Edvinsson L, Ekman R, Jansen I, et al.: Calcitonin gene-related peptide and cerebral blood vessels: distribution and vasomotor effects. J Cereb Blood Flow Metab 1987, 7:720–728.

    PubMed  CAS  Google Scholar 

  44. Goadsby PJ, Edvinsson L, Ekman R: Release of vasoactive peptides in the extracerebral circulation of man and the cat during activation of the trigeminovascular system. Ann Neurol 1988, 23:193–196.

    PubMed  CAS  Google Scholar 

  45. Goadsby PJ, Edvinsson L, Ekman R: Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 1990, 28:183–187.

    PubMed  CAS  Google Scholar 

  46. Gallai V, Sarchielli P, Floridi A, et al.: Vasoactive peptides levels in the plasma of young migraine patients with and without aura assessed both interictally and ictally. Cephalalgia 1995, 15:384–390.

    PubMed  CAS  Google Scholar 

  47. Goadsby PJ, Edvinsson L: Human in vivo evidence for trigeminovascular activation in cluster headache. Brain 1994, 117:427–434.

    PubMed  Google Scholar 

  48. Fanciullacci M, Alessandri M, Figini M, et al.: Increase in plasma calcitonin gene-related peptide from extracerebral circulation during nitroglycerin-induced cluster headache attack. Pain 1995, 60:119–123.

    PubMed  CAS  Google Scholar 

  49. Goadsby PJ, Edvinsson L: Peripheral and central trigeminovascular activation in cat is blocked by the serotonin (5HT)-1D receptor agonist 311C90. Headache 1994, 34:394–399.

    PubMed  CAS  Google Scholar 

  50. Goadsby PJ, Edvinsson L: The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol 1993, 33:48–56.

    PubMed  CAS  Google Scholar 

  51. Zagami AS, Goadsby PJ, Edvinsson L: Stimulation of the superior sagittal sinus in the cat causes release of vasoactive peptides. Neuropeptides 1990, 16:69–75.

    PubMed  CAS  Google Scholar 

  52. Knight YE, Edvinsson L, Goadsby PJ: Blockade of CGRP release after superior sagittal sinus stimulation in cat: a comparison of avitriptan and CP122,288. Neuropeptides 1999, 33:41–46.

    PubMed  CAS  Google Scholar 

  53. Knight YE, Edvinsson L, Goadsby PJ: 4991W93 inhibits release of calcitonin gene-related peptide in the cat but only at doses with 5HT1B/1D receptor agonist activity. Neuropharmacology 2001, 40:520–525.

    PubMed  CAS  Google Scholar 

  54. Doods H, Hallermayer G, Wu D, et al.: Pharmacological profile of BIBN4096BS, the first selective small molecule CGRP antagonist. Br J Pharmacol 2000, 129:420–423.

    PubMed  CAS  Google Scholar 

  55. Moreno MJ, Abounader R, Hebert E, et al.: Efficacy of the non-peptide CGRP receptor antagonist BIBN4096BS in blocking CGRP-induced dilations in human and bovine cerebral arteries: potential implications in acute migraine treatment. Neuropharmacology 2002, 42:568–576.

    PubMed  CAS  Google Scholar 

  56. Storer RJ, Akerman S, Goadsby PJ: Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br J Pharmacol 2004, 142:1171–1181.

    PubMed  CAS  Google Scholar 

  57. Olesen J, Diener HC, Husstedt IW, et al.: Calcitonin generelated peptide (CGRP) receptor antagonist BIBN4096BS is effective in the treatment of migraine attacks. N Engl J Med 2004, 350:1104–1110. Pivotal paper on the CGRP receptor antagonist and acute migraine.

    PubMed  CAS  Google Scholar 

  58. Petersen KA, Birk S, Lassen LH, et al.: The novel CGRP-antagonist, BIBN4096BS, does not affect the cerebral hemodynamics in healthy volunteers. Cephalalgia 2003, 23:729.

    Google Scholar 

  59. Petersen KA, Lassen LH, Birk S, Olesen J: The effect of the nonpeptide CGRP-antagonist, BIBN406BS, on human-alpha CGRP-induced headache and hemodynamics in healthy volunteers. Cephalalgia 2003, 23:725.

    Google Scholar 

  60. Sawynok J: Adenosine receptor activation and nociception. Eur J Pharmacol 1998, 347:1–11.

    PubMed  CAS  Google Scholar 

  61. Sawynok J: Purines in pain management. Curr Opin Central Peripher Nerv Syst Investigation Drugs 1999, 1:27–38.

    CAS  Google Scholar 

  62. Paalzow G, Paalzow L: The effects of caffeine and theophylline on nociceptive stimulation in the rat. Acta Pharmacol Toxicol 1973, 32:22–32.

    Article  CAS  Google Scholar 

  63. Sawynok J, Sweeney MI, White TD: Classification of adenosine receptors mediating antinociception in the rat spinal cord. Br J Pharmacol 1986, 88:923–930.

    PubMed  CAS  Google Scholar 

  64. Sjolund KF, Sollevi A, Segerdahl M, et al.: Intrathecal and systemic R-phenylisopropyadenosine reduces scratching behavior in a rat mononeuropathy model. Neuroreport 1996, 7:1856–1860.

    Article  Google Scholar 

  65. DeLander GE, Hopkins GJ: Spinal adenosine modulates descending antinociceptive pathways stimulated by morphine. J Pharmacol Exp Ther 1986, 239:88–93.

    PubMed  CAS  Google Scholar 

  66. DeLander GE, Hopkins CJ: Interdependence of spinal adenosinergic, serotonergic, and noradrenergic systems mediating antinociception. Neuropharmacology 1987, 26:1791–1794.

    PubMed  CAS  Google Scholar 

  67. Schindler M, Harris CA, Hayes B, et al.: Immunohistochemical localization of adenosine A1 receptors in human brain regions. Neurosci Lett 2001, 297:211–215.

    PubMed  CAS  Google Scholar 

  68. Gurden MF, Coates J, Ellis F, et al.: Functional characterisation of three adenosine receptor types. Br J Pharmacol 1993, 109:693–698.

    PubMed  CAS  Google Scholar 

  69. Sheehan MJ, Wilson DJ, Cousins R, Giles H: Relative intrinsic efficacy of adenosine A1 receptor agonists measured using functional and radioligand binding. Br J Pharmacol 2000, 131:34P.

    Google Scholar 

  70. Goadsby PJ, Hoskin KL, Storer RJ, et al.: Adenosine (A1) receptor agonists inhibit trigeminovascular nociceptive transmission. Brain 2002, 125:1392–1401. Includes general overview of the place of adenosine A1 receptor agonists in migraine.

    PubMed  CAS  Google Scholar 

  71. Santicioli P, Delbianco E, Maggi CA: Adenosine A1 receptors mediate the presynaptic inhibition of calcitonin gene-related peptide release by adenosine in the rat spinal cord. Eur J Pharmacol 1993, 231:139–142.

    PubMed  CAS  Google Scholar 

  72. Honey AC, Bland-Ward PA, Connor HE, et al.: Study of an adenosine A1 receptor agonist on trigeminally evoked dural blood vessel dilation in the anaesthetized rat. Cephalalgia 2000, 22:260–264.

    Google Scholar 

  73. Kaube H, Katsarava Z, Kaufer T, et al.: A new method to increase the nociception specificity of the human blink reflex. Clin Neurophysiol 2000, 111:413–416.

    PubMed  CAS  Google Scholar 

  74. Giffin NJ, Kowacs F, Libri V, et al.: Effect of adenosine A1 receptor agonist GR79236 on trigeminal nociception with blink reflex recordings in healthy human subjects. Cephalalgia 2003, 23:287–292.

    PubMed  CAS  Google Scholar 

  75. Meunier J, Mouledous L, Topham CM: The nociceptin (ORL1) receptor: molecular cloning and functional architecture. Peptides 2000, 21:893–900.

    PubMed  CAS  Google Scholar 

  76. Reinscheid RK, Nothacker H, Civelli O: The orphanin FQ/nociceptin gene: structure, tissue distribution of expression, and functional implications obtained from knockout mice. Peptides 2000, 21:901–906.

    PubMed  CAS  Google Scholar 

  77. Mogil JS, Pasternak GW: The molecular and behavioral pharmacology of the orphanin FQ/nociceptin peptide and receptor family. Physiol Rev 2001, 53:381–415.

    CAS  Google Scholar 

  78. Reinscheid RK, Nothacker HP, Bourson A, et al.: Orphanin FQ: a neuropeptide that activates an opioid-like G protein-coupled receptor. Science 1995, 270:792–794.

    PubMed  CAS  Google Scholar 

  79. Darland T, Grandy DK: The orphanin FQ system: an emerging target for the management of pain? Br J Anaesth 1998, 81:29–37.

    PubMed  CAS  Google Scholar 

  80. Xu X, Grass S, Hao J, et al.: Nociceptin/orphanin FQ in spinal nociceptive mechanisms under normal and pathological conditions. Peptides 2000, 21:1031–1036.

    PubMed  CAS  Google Scholar 

  81. Hou M, Tajti J, Uddman R, Edvinsson L: Demonstration of nociception positive cells and opioid-receptor like-1 in human trigeminal ganglion. Cephalalgia 2001, 21:402.

    Google Scholar 

  82. Williamson DJ, Hargreaves RJ, Hill RG, Shepheard SL: Intravital microscope studies on the effects of neurokinin agonists and calcitonin gene-related peptide on dural blood vessel diameter in the anaesthetized rat. Cephalalgia 1997, 17:518–524.

    PubMed  CAS  Google Scholar 

  83. Bartsch T, Akerman S, Goadsby PJ: The ORL-1 (NOP1) receptor ligand nociceptin/orphanin FQ (N/OFQ) inhibits neurogenic vasodilatation in the rat. Neuropharmacology 2002, 43:991–998.

    PubMed  CAS  Google Scholar 

  84. Okuda-Ashitaka E, Minami T, Tachibana S, et al.: Nocistatin, a peptide that blocks nociceptin action in pain transmission. Nature 1998, 392:286–289.

    PubMed  CAS  Google Scholar 

  85. Okuda-Ashitaka E, Ito S: Nocistatin: a novel neuropeptide encoded by the gene for the nociceptin/orphanin FQ precursor. Peptides 2000, 21:1101–1109.

    PubMed  CAS  Google Scholar 

  86. Caterina MJ, Schumacher MA, Tominaga M, et al.: The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997, 389:816–824.

    PubMed  CAS  Google Scholar 

  87. Joo F, Szolcsanyi J, Jancso-Gabor A: Mitochondrial alterations in the spinal ganglion cells of the rat accompanying the longlasting sensory disturbance induced by capsaicin. Life Sci 1969, 8:621–626.

    PubMed  CAS  Google Scholar 

  88. Guo A, Vulchanova L, Wang J, et al.: Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor, and IB4 binding sites. Eur J Neurosci 1999, 11:946–958.

    PubMed  CAS  Google Scholar 

  89. Ichikawa H, Sugimoto T: VR1-immunoreactive primary sensory neurons in the rat trigeminal ganglion. Brain Res 2001, 890:184–188.

    PubMed  CAS  Google Scholar 

  90. Hou M, Uddman R, Tajti J, et al.: Capsaicin receptor immunoreactivity in the human trigeminal ganglion. Neurosci Lett 2002, 330:223–226.

    PubMed  CAS  Google Scholar 

  91. Akerman S, Kaube H, Goadsby PJ: Vanilloid type 1 receptor (VR1) evoked CGRP release plays a minor role in causing dural vessel dilation via the trigeminovascular system. Br J Pharmacol 2003, 140:718–724.

    PubMed  CAS  Google Scholar 

  92. Matsuda LA, Lolait SJ, Brownstein MJ, et al.: Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990, 346:561–564.

    PubMed  CAS  Google Scholar 

  93. Hoehe MR, Caenazzo L, Martinez MM, et al.: Genetic and physical mapping of the human cannabinoid receptor gene to chromosome 6q14-q15. Nat New Biol 1991, 3:880–885.

    CAS  Google Scholar 

  94. Devane WA, Hanus L, Breuer A, et al.: Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992, 258:1946–1949.

    PubMed  CAS  Google Scholar 

  95. Munro S, Thomas KL, Abu-Shaar M: Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993, 365:61–65.

    PubMed  CAS  Google Scholar 

  96. Dewey WL: Cannabinoid pharmacology. Pharmacol Rev 1986, 38:151–178.

    PubMed  CAS  Google Scholar 

  97. Smith PB, Compton DR, Welch SP, et al.: The pharmacological activity of anandamide, a putative endogenous cannabinoid, in mice. J Pharmacol Exp Ther 1994, 270:219–227.

    PubMed  Google Scholar 

  98. Adams IB, Compton DR, Martin BR: Assessment of anandamide interaction with the cannabinoid brain receptor: SR 141716A antagonism studies in mice and autoradiographic analysis of receptor binding in rat brain. J Pharmacol Exp Ther 1998, 284:1209–1217.

    PubMed  CAS  Google Scholar 

  99. Crawley JN, Corwin RL, Robinson JK, et al.: Anandamide, an endogenous ligand of the cannabinoid receptor, induces hypomotility and hypothermia in vivo in rodents. Pharmacol Biochem Behav 1993, 46:967–972.

    PubMed  CAS  Google Scholar 

  100. Akerman S, Kaube H, Goadsby PJ: Anandamide is able to inhibit trigeminal neurons using an in vivo model of trigeminovascular-mediated nociception. J Pharmacol Exp Ther 2004, 309:56–63.

    PubMed  CAS  Google Scholar 

  101. Zygmunt PM, Petersson J, Andersson DA, et al.: Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 1999, 400:452–457.

    PubMed  CAS  Google Scholar 

  102. Akerman S, Kaube H, Goadsby PJ: Anandamide shows both cannabinoid and vanilloid properties in an in vivo model of trigeminovascular mediated head pain. Cephalalgia 2003, 23:646.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goadsby, P.J. Post-triptan era for the treatment of acute migraine. Current Science Inc 8, 393–398 (2004). https://doi.org/10.1007/s11916-996-0013-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11916-996-0013-3

Keywords

Navigation