Skip to main content

Novel Pharmacological Targets of Migraine: An Overview

  • Chapter
  • First Online:
Novel Synthetic Drugs in Migraine

Abstract

Despite all studies during the last decades, the exact pathophysiological mechanisms underlying the onset of a migraine attack are not yet fully characterized. Notwithstanding, the important role of serotonin (5-hydroxytryptamine, 5-HT) and the discovery of calcitonin gene–related peptide (CGRP) as a key point in the pathophysiology of migraine, has allowed the development of new potential drugs for both the acute and preventive treatment of migraine. Since triptans (the gold standard for the acute treatment of migraine) induce vasoconstrictor effects and are therefore contraindicated in patients with cardio- and cerebrovascular disorders, novel synthetic acute and prophylactic antimigraine drugs have been developed. Besides the monoclonal antibodies targeted at CGRP or the CGRP receptor, these novel drugs include ditans and gepants, which target the 5-HT1F receptors at a central and peripheral level and CGRP receptors in the trigeminovascular system, respectively. Currently, these two new classes of antimigraine drugs have been evaluated in clinical trials, showing safety and efficacy in aborting and preventing migraine attacks. However, further studies are required to confirm their efficacy and long-term safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olesen J, Steiner TJ. The international classification of headache disorders, 2nd edn (ICDH-II). J Neurol Neurosurg Psychiatry. 2004;75:808–11. https://doi.org/10.1136/jnnp.2003.031286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia. 2018;38:1–211. https://doi.org/10.1177/0333102417738202.

  3. GBD 2016 Headache Collaborators. Global, regional, and national burden of migraine and tension-type headache, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17:954–76. https://doi.org/10.1016/S1474-4422(18)30322-3.

    Article  Google Scholar 

  4. Graham JR, Wolff HG. Mechanism of migraine headache and action of ergotamine tartrate. Arch Neurol Psychiatr. 1938;39:737–63. https://doi.org/10.1001/archneurpsyc.1938.02270040093005.

    Article  CAS  Google Scholar 

  5. Moskowitz MA. The neurobiology of vascular head pain. Ann Neurol. 1984;16:157–68. https://doi.org/10.1002/ana.410160202.

    Article  CAS  PubMed  Google Scholar 

  6. Hoffmann J, Baca SM, Akerman S. Neurovascular mechanisms of migraine and cluster headache. J Cereb Blood Flow Metab. 2019;39:573–94. https://doi.org/10.1177/0271678X17733655.

    Article  PubMed  Google Scholar 

  7. Villalon CM, VanDenBrink AM. The role of 5-hydroxytryptamine in the pathophysiology of migraine and its relevance to the design of novel treatments. Mini Rev Med Chem. 2017;17:928–38. https://doi.org/10.2174/1389557516666160728121050.

    Article  CAS  PubMed  Google Scholar 

  8. Goadsby PJ, Edvinsson L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol. 1993;33:48–56. https://doi.org/10.1002/ana.410330109.

    Article  CAS  PubMed  Google Scholar 

  9. Villalon CM, Olesen J. The role of CGRP in the pathophysiology of migraine and efficacy of CGRP receptor antagonists as acute antimigraine drugs. Pharmacol Ther. 2009;124:309–23. https://doi.org/10.1016/j.pharmthera.2009.09.003.

    Article  CAS  PubMed  Google Scholar 

  10. Ashina M, Hansen JM, Do TP, Melo-Carrillo A, Burstein R, Moskowitz MA. Migraine and the trigeminovascular system-40 years and counting. Lancet Neurol. 2019;18:795–804. https://doi.org/10.1016/S1474-4422(19)30185-1.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rubio-Beltran E, Labastida-Ramirez A, Villalon CM, MaassenVanDenBrink A. Is selective 5-HT1F receptor agonism an entity apart from that of the triptans in antimigraine therapy? Pharmacol Ther. 2018;186:88–97. https://doi.org/10.1016/j.pharmthera.2018.01.005.

    Article  CAS  PubMed  Google Scholar 

  12. Negro A, Koverech A, Martelletti P. Serotonin receptor agonists in the acute treatment of migraine: a review on their therapeutic potential. J Pain Res. 2018;11:515–26. https://doi.org/10.2147/JPR.S132833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Capi M, De Angelis V, De Bernardini D, De Luca O, Cipolla F, Lionetto L, et al. CGRP receptor antagonists and 5-HT1F receptor agonist in the treatment of migraine. J Clin Med. 2021;10(7):1429. https://doi.org/10.3390/jcm10071429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vila-Pueyo M. Targeted 5-HT1F therapies for migraine. Neurotherapeutics. 2018;15:291–303. https://doi.org/10.1007/s13311-018-0615-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Negro A, Martelletti P. Novel synthetic treatment options for migraine. Expert Opin Pharmacother. 2021;22:907–22. https://doi.org/10.1080/14656566.2020.1862793.

    Article  CAS  PubMed  Google Scholar 

  16. de Vries T, Villalon CM, MaassenVanDenBrink A. Pharmacological treatment of migraine: CGRP and 5-HT beyond the triptans. Pharmacol Ther. 2020;211:107528. https://doi.org/10.1016/j.pharmthera.2020.107528.

    Article  CAS  PubMed  Google Scholar 

  17. Gonzalez-Hernandez A, Condes-Lara M, Garcia-Boll E, Villalon CM. An outlook on the trigeminovascular mechanisms of action and side effects concerns of some potential neuropeptidergic antimigraine therapies. Expert Opin Drug Metab Toxicol. 2021;17:179–99. https://doi.org/10.1080/17425255.2021.1856366.

    Article  CAS  PubMed  Google Scholar 

  18. Rivera-Mancilla E, Villalon CM, MaassenVanDenBrink A. CGRP inhibitors for migraine prophylaxis: a safety review. Expert Opin Drug Saf. 2020;19:1237–50. https://doi.org/10.1080/14740338.2020.1811229.

    Article  CAS  PubMed  Google Scholar 

  19. Doenicke A, Brand J, Perrin VL. Possible benefit of GR43175, a novel 5-HT1-like receptor agonist, for the acute treatment of severe migraine. Lancet. 1988;1:1309–11. https://doi.org/10.1016/s0140-6736(88)92122-8.

    Article  CAS  PubMed  Google Scholar 

  20. Tfelt-Hansen PC. Does sumatriptan cross the blood-brain barrier in animals and man? J Headache Pain. 2010;11:5–12. https://doi.org/10.1007/s10194-009-0170-y.

    Article  CAS  PubMed  Google Scholar 

  21. Tfelt-Hansen P, De Vries P, Saxena PR. Triptans in migraine: a comparative review of pharmacology, pharmacokinetics and efficacy. Drugs. 2000;60:1259–87. https://doi.org/10.2165/00003495-200060060-00003.

    Article  CAS  PubMed  Google Scholar 

  22. Dodick DW, Martin V. Triptans and CNS side-effects: pharmacokinetic and metabolic mechanisms. Cephalalgia. 2004;24:417–24. https://doi.org/10.1111/j.1468-2982.2004.00694.x.

    Article  CAS  PubMed  Google Scholar 

  23. Hall GC, Brown MM, Mo J, MacRae KD. Triptans in migraine: the risks of stroke, cardiovascular disease, and death in practice. Neurology. 2004;62:563–8. https://doi.org/10.1212/01.wnl.0000110312.36809.7f.

    Article  CAS  PubMed  Google Scholar 

  24. MaassenVanDenBrink A, Reekers M, Bax WA, Ferrari MD, Saxena PR. Coronary side-effect potential of current and prospective antimigraine drugs. Circulation. 1998;98:25–30. https://doi.org/10.1161/01.cir.98.1.25.

    Article  CAS  PubMed  Google Scholar 

  25. Maassen Van Den Brink A, Saxena PR. Coronary vasoconstrictor potential of triptans: a review of in vitro pharmacologic data. Headache. 2004;44(Suppl 1):S13–9. https://doi.org/10.1111/j.1526-4610.2004.04104.x.

    Article  PubMed  Google Scholar 

  26. Dodick D, Lipton RB, Martin V, Papademetriou V, Rosamond W, MaassenVanDenBrink A, et al. Consensus statement: cardiovascular safety profile of triptans (5-HT agonists) in the acute treatment of migraine. Headache. 2004;44:414–25. https://doi.org/10.1111/j.1526-4610.2004.04078.x.

    Article  PubMed  Google Scholar 

  27. Ferrari MD, Goadsby PJ, Roon KI, Lipton RB. Triptans (serotonin, 5-HT1B/1D agonists) in migraine: detailed results and methods of a meta-analysis of 53 trials. Cephalalgia. 2002;22:633–58. https://doi.org/10.1046/j.1468-2982.2002.00404.x.

    Article  CAS  PubMed  Google Scholar 

  28. Goadsby PJ, Sprenger T. Current practice and future directions in the prevention and acute management of migraine. Lancet Neurol. 2010;9:285–98. https://doi.org/10.1016/S1474-4422(10)70005-3.

    Article  PubMed  Google Scholar 

  29. Tfelt-Hansen P, Olesen J. Taking the negative view of current migraine treatments: the unmet needs. CNS Drugs. 2012;26:375–82. https://doi.org/10.2165/11630590-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  30. Tajti J, Majlath Z, Szok D, Csati A, Vecsei L. Drug safety in acute migraine treatment. Expert Opin Drug Saf. 2015;14:891–909. https://doi.org/10.1517/14740338.2015.1026325.

    Article  CAS  PubMed  Google Scholar 

  31. Company EL. Lilly’s REYVOW™ (lasmiditan), The first and only medicine in a new class of acute treatment for migraine, receives FDA approval. 2019. https://www.prnewswire.com/news-releases/lillys-reyvow-lasmiditan-the-first-and-only-medicine-in-a-new-class-of-acute-treatment-for-migraine-receives-fda-approval-300937322.html. Accessed 21 Oct 2021.

  32. plc A. Allergan receives U.S. FDA approval for UBRELVYâ„¢ for the acute treatment of migraine with or without aura in adults. 2019. https://www.prnewswire.com/news-releases/allergan-receives-us-fda-approval-for-ubrelvy-for-the-acute-treatment-of-migraine-with-or-without-aura-in-adults-300979082.html. Accessed 21 Oct 2021.

  33. Ltd BPCH. Biohaven’s NURTEC™ ODT (rimegepant) receives FDA approval for the acute treatment of migraine in adults. https://www.prnewswire.com/news-releases/biohavens-nurtec-odt-rimegepant-receives-fdaapproval-for-the-acute-treatment-of-migraine-in-adults-301013021.html. Accessed 21 Oct 2021.

  34. Ltd BPCH. Biohaven delivers positive phase 3 results with rimegepant zydis® orally dissolving tablet (ODT): rapid and lasting benefit for the acute treatment of migraine. https://www.prnewswire.com/news-releases/biohaven-delivers-positivephase-3-results-with-rimegepant-zydis-orally-dissolving-tablet-odt-rapid-and-lasting-benefit-forthe-acute-treatment-of-migraine-300758762.html. Accessed 21 Oct 2021.

  35. NCT0372368. Efficacy and safety trial of rimegepant for migraine prevention in adults. 2018 (9 Aug 2021). https://clinicaltrials.gov/ct2/show/NCT03732638. Accessed 21 Oct 2021.

  36. Croop R, Lipton RB, Kudrow D, Stock DA, Kamen L, Conway CM, et al. Oral rimegepant for preventive treatment of migraine: a phase 2/3, randomised, double-blind, placebo-controlled trial. Lancet. 2021;397:51–60. https://doi.org/10.1016/S0140-6736(20)32544-7.

    Article  CAS  PubMed  Google Scholar 

  37. Ltd BPHC. FDA approves Biohaven’s NURTEC® ODT (rimegepant) for prevention: now the first and only migraine medication for both acute and preventive treatment. 2021. https://www.prnewswire.com/news-releases/fda-approves-biohavens-nurtec-odt-rimegepant-for-prevention-now-the-first-and-only-migraine-medication-for-both-acute-and-preventive-treatment-301301304.html. Accessed 25 Oct 2021.

  38. Martelletti P, Cipolla F, Capi M, Curto M, Lionetto L. Atogepant. Calcitonin gene-related peptide (CGRP) receptor antagonist, preventive treatment of migraine. Drugs Future. 2020;45:285. https://doi.org/10.1358/dof.2020.45.5.3123467.

    Article  Google Scholar 

  39. NCT03855137. Efficacy, safety, and tolerability of atogepant for the prevention of chronic migraine. https://clinicaltrials.gov/ct2/show/NCT03855137. Accessed 21 Oct 2021.

  40. NCT04408794. Long-term safety study of BHV-3500 (Zavegepant*) for the acute treatment of migraine. 2020 (8 Apr 2021). https://clinicaltrials.gov/ct2/show/NCT04408794. Accessed 21 Oct 2021.

  41. Curto M, Cipolla F, Cisale GY, Capi M, Spuntarelli V, Guglielmetti M, et al. Profiling lasmiditan as a treatment option for migraine. Expert Opin Pharmacother. 2020;21:147–53. https://doi.org/10.1080/14656566.2019.1694004.

    Article  CAS  PubMed  Google Scholar 

  42. MaassenVanDenBrink A, Meijer J, Villalon CM, Ferrari MD. Wiping out CGRP: potential cardiovascular risks. Trends Pharmacol Sci. 2016;37:779–88. https://doi.org/10.1016/j.tips.2016.06.002.

    Article  CAS  PubMed  Google Scholar 

  43. Rivera-Mancilla E, Al-Hassany L, Villalon CM, MaassenVanDenBrink A. Metabolic aspects of migraine: association with obesity and diabetes mellitus. Front Neurol. 2021;12:686398. https://doi.org/10.3389/fneur.2021.686398.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Villalon CM, Centurion D, Valdivia LF, de Vries P, Saxena PR. Migraine: pathophysiology, pharmacology, treatment and future trends. Curr Vasc Pharmacol. 2003;1:71–84. https://doi.org/10.2174/1570161033386826.

    Article  CAS  PubMed  Google Scholar 

  45. Kimball RW, Friedman AP, Vallejo E. Effect of serotonin in migraine patients. Neurology. 1960;10:107–11. https://doi.org/10.1212/wnl.10.2.107.

    Article  CAS  PubMed  Google Scholar 

  46. Goadsby PJ, Edvinsson L, Ekman R. Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol. 1988;23:193–6. https://doi.org/10.1002/ana.410230214.

    Article  CAS  PubMed  Google Scholar 

  47. Tepper SJ. Acute treatment of migraine. Neurol Clin. 2019;37:727–42. https://doi.org/10.1016/j.ncl.2019.07.006.

    Article  PubMed  Google Scholar 

  48. Silberstein SD, McCrory DC. Ergotamine and dihydroergotamine: history, pharmacology, and efficacy. Headache. 2003;43:144–66. https://doi.org/10.1046/j.1526-4610.2003.03034.x.

    Article  PubMed  Google Scholar 

  49. Villalon CM, Centurion D, Willems EW, Arulmani U, Saxena PR, Valdivia LF. 5-HT1B receptors and alpha 2A/2C-adrenoceptors mediate external carotid vasoconstriction to dihydroergotamine. Eur J Pharmacol. 2004;484:287–90. https://doi.org/10.1016/j.ejphar.2003.11.026.

    Article  CAS  PubMed  Google Scholar 

  50. Villalon CM, De Vries P, Rabelo G, Centurion D, Sanchez-Lopez A, Saxena P. Canine external carotid vasoconstriction to methysergide, ergotamine and dihydroergotamine: role of 5-HT1B/1D receptors and alpha2-adrenoceptors. Br J Pharmacol. 1999;126:585–94. https://doi.org/10.1038/sj.bjp.0702324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tfelt-Hansen P, Saxena PR, Dahlof C, Pascual J, Lainez M, Henry P, et al. Ergotamine in the acute treatment of migraine: a review and European consensus. Brain. 2000;123(Pt 1):9–18. https://doi.org/10.1093/brain/123.1.9.

    Article  PubMed  Google Scholar 

  52. Lipton RB. Ergotamine tartrate and dihydroergotamine mesylate: safety profiles. Headache. 1997;37(Suppl 1):S33–41.

    PubMed  Google Scholar 

  53. Smith TR, Winner P, Aurora SK, Jeleva M, Hocevar-Trnka J, Shrewsbury SB. STOP 301: a phase 3, open-label study of safety, tolerability, and exploratory efficacy of INP104, Precision Olfactory Delivery (POD((R))) of dihydroergotamine mesylate, over 24/52 weeks in acute treatment of migraine attacks in adult patients. Headache. 2021;61:1214–26. https://doi.org/10.1111/head.14184.

    Article  PubMed  Google Scholar 

  54. Society AH. Dihydroergotamine mesylate nasal spray receives FDA approval for the acute treatment of migraine in adults. 2021. https://americanheadachesociety.org/news/dihydroergotamine-mesylate-nasal-spray-receives-fda-approval-for-the-acute-treatment-of-migraine-in-adults/. Accessed 4 Nov 2021.

  55. Rubio-Beltran E, Labastida-Ramirez A, Haanes KA, van den Bogaerdt A, Bogers A, Zanelli E, et al. Characterization of binding, functional activity, and contractile responses of the selective 5-HT1F receptor agonist lasmiditan. Br J Pharmacol. 2019;176:4681–95. https://doi.org/10.1111/bph.14832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Feniuk W, Humphrey PP, Perren MJ, Connor HE, Whalley ET. Rationale for the use of 5-HT1-like agonists in the treatment of migraine. J Neurol. 1991;238(Suppl 1):S57–61. https://doi.org/10.1007/BF01642908.

    Article  PubMed  Google Scholar 

  57. Chan KY, Labruijere S, Ramirez Rosas MB, de Vries R, Garrelds IM, Danser AH, et al. Cranioselectivity of sumatriptan revisited: pronounced contractions to sumatriptan in small human isolated coronary artery. CNS Drugs. 2014;28:273–8. https://doi.org/10.1007/s40263-013-0136-0.

    Article  CAS  PubMed  Google Scholar 

  58. Labastida-Ramirez A, Rubio-Beltran E, Haanes KA, Chan KY, Garrelds IM, Johnson KW, et al. Lasmiditan inhibits calcitonin gene-related peptide release in the rodent trigeminovascular system. Pain. 2020;161:1092–9. https://doi.org/10.1097/j.pain.0000000000001801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nilsson T, Longmore J, Shaw D, Pantev E, Bard JA, Branchek T, et al. Characterisation of 5-HT receptors in human coronary arteries by molecular and pharmacological techniques. Eur J Pharmacol. 1999;372:49–56. https://doi.org/10.1016/s0014-2999(99)00114-4.

    Article  CAS  PubMed  Google Scholar 

  60. Bouchelet I, Case B, Olivier A, Hamel E. No contractile effect for 5-HT1D and 5-HT1F receptor agonists in human and bovine cerebral arteries: similarity with human coronary artery. Br J Pharmacol. 2000;129:501–8. https://doi.org/10.1038/sj.bjp.0703081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Centurion D, Sanchez-Lopez A, De Vries P, Saxena PR, Villalon CM. The GR127935-sensitive 5-HT(1) receptors mediating canine internal carotid vasoconstriction: resemblance to the 5-HT(1B), but not to the 5-HT(1D) or 5-ht(1F), receptor subtype. Br J Pharmacol. 2001;132:991–8. https://doi.org/10.1038/sj.bjp.0703913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gomez-Mancilla B, Cutler NR, Leibowitz MT, Spierings EL, Klapper JA, Diamond S, et al. Safety and efficacy of PNU-142633, a selective 5-HT1D agonist, in patients with acute migraine. Cephalalgia. 2001;21:727–32. https://doi.org/10.1046/j.1468-2982.2001.00208.x.

    Article  CAS  PubMed  Google Scholar 

  63. Ferrari MD. Re: Gomez-Mancilla et al. Safety and efficacy of PNU-142633, a selective 5-HT(1D) agonist, in patients with acute migraine. Cephalalgia 2001;21:727–32. Cephalalgia. 2001;21:711. https://doi.org/10.1046/j.0333-1024.2001.00267.x.

    Article  CAS  PubMed  Google Scholar 

  64. Do TP, Guo S, Ashina M. Therapeutic novelties in migraine: new drugs, new hope? J Headache Pain. 2019;20:37. https://doi.org/10.1186/s10194-019-0974-3.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Adham N, Kao HT, Schecter LE, Bard J, Olsen M, Urquhart D, et al. Cloning of another human serotonin receptor (5-HT1F): a fifth 5-HT1 receptor subtype coupled to the inhibition of adenylate cyclase. Proc Natl Acad Sci U S A. 1993;90:408–12. https://doi.org/10.1073/pnas.90.2.408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bouchelet I, Cohen Z, Case B, Seguela P, Hamel E. Differential expression of sumatriptan-sensitive 5-hydroxytryptamine receptors in human trigeminal ganglia and cerebral blood vessels. Mol Pharmacol. 1996;50:219–23.

    CAS  PubMed  Google Scholar 

  67. Castro ME, Pascual J, Romon T, del Arco C, del Olmo E, Pazos A. Differential distribution of [3H]sumatriptan binding sites (5-HT1B, 5-HT1D and 5-HT1F receptors) in human brain: focus on brainstem and spinal cord. Neuropharmacology. 1997;36:535–42. https://doi.org/10.1016/s0028-3908(97)00061-0.

    Article  CAS  PubMed  Google Scholar 

  68. Lucaites VL, Krushinski JH, Schaus JM, Audia JE, Nelson DL. [3H]LY334370, a novel radioligand for the 5-HT1F receptor. II. Autoradiographic localization in rat, Guinea pig, monkey and human brain. Naunyn Schmiedebergs Arch Pharmacol. 2005;371:178–84. https://doi.org/10.1007/s00210-005-1036-8.

    Article  CAS  PubMed  Google Scholar 

  69. Phebus LA, Johnson KW, Zgombick JM, Gilbert PJ, Van Belle K, Mancuso V, et al. Characterization of LY344864 as a pharmacological tool to study 5-HT1F receptors: binding affinities, brain penetration and activity in the neurogenic dural inflammation model of migraine. Life Sci. 1997;61:2117–26. https://doi.org/10.1016/s0024-3205(97)00885-0.

    Article  CAS  PubMed  Google Scholar 

  70. Shepheard S, Edvinsson L, Cumberbatch M, Williamson D, Mason G, Webb J, et al. Possible antimigraine mechanisms of action of the 5HT1F receptor agonist LY334370. Cephalalgia. 1999;19:851–8. https://doi.org/10.1046/j.1468-2982.1999.1910851.x.

    Article  CAS  PubMed  Google Scholar 

  71. Nelson DL, Phebus LA, Johnson KW, Wainscott DB, Cohen ML, Calligaro DO, et al. Preclinical pharmacological profile of the selective 5-HT1F receptor agonist lasmiditan. Cephalalgia. 2010;30:1159–69. https://doi.org/10.1177/0333102410370873.

    Article  PubMed  Google Scholar 

  72. Mitsikostas DD, Sanchez del Rio M, Moskowitz MA, Waeber C. Both 5-HT1B and 5-HT1F receptors modulate c-fos expression within rat trigeminal nucleus caudalis. Eur J Pharmacol. 1999;369:271–7. https://doi.org/10.1016/s0014-2999(99)00067-9.

    Article  CAS  PubMed  Google Scholar 

  73. Shahidi S, Sadeghian R, Komaki A, Asl SS. Intracerebroventricular microinjection of the 5-HT1F receptor agonist LY 344864 inhibits methamphetamine conditioned place preference reinstatement in rats. Pharmacol Biochem Behav. 2018;173:27–35. https://doi.org/10.1016/j.pbb.2018.08.001.

    Article  CAS  PubMed  Google Scholar 

  74. Goldstein DJ, Roon KI, Offen WW, Ramadan NM, Phebus LA, Johnson KW, et al. Selective seratonin 1F (5-HT(1F)) receptor agonist LY334370 for acute migraine: a randomised controlled trial. Lancet. 2001;358:1230–4. https://doi.org/10.1016/s0140-6736(01)06347-4.

    Article  CAS  PubMed  Google Scholar 

  75. Ramadan NM, Skljarevski V, Phebus LA, Johnson KW. 5-HT1F receptor agonists in acute migraine treatment: a hypothesis. Cephalalgia. 2003;23:776–85. https://doi.org/10.1046/j.1468-2982.2003.00525.x.

    Article  CAS  PubMed  Google Scholar 

  76. NCT02439320. Lasmiditan compared to placebo in the acute treatment of migraine: (SAMURAI). 2015 (16 Dec 2019). https://clinicaltrials.gov/ct2/show/NCT02439320. Accessed 22 Oct 2021.

  77. NCT02565186. An open-label, long-term, safety study of lasmiditan for the acute treatment of migraine (GLADIATOR). 2015 (25 Aug 2020). https://clinicaltrials.gov/ct2/show/NCT02565186. Accessed 22 Oct 2021.

  78. NCT02605174. Three doses of lasmiditan (50 mg, 100 mg and 200 mg) compared to placebo in the acute treatment of migraine (SPARTAN). 2015 (23 Sept 2019). https://clinicaltrials.gov/ct2/show/NCT02605174. Accessed 22 Oct 2021.

  79. Rizzoli PB. Emerging therapeutic options for acute migraine: focus on the potential of lasmiditan. Neuropsychiatr Dis Treat. 2014;10:547–52. https://doi.org/10.2147/NDT.S25531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Martinelli D, Bitetto V, Tassorelli C. Lasmiditan: an additional therapeutic option for the acute treatment of migraine. Expert Rev Neurother. 2021;21:491–502. https://doi.org/10.1080/14737175.2021.1912599.

    Article  CAS  PubMed  Google Scholar 

  81. Krege JH, Rizzoli PB, Liffick E, Doty EG, Dowsett SA, Wang J, et al. Safety findings from phase 3 lasmiditan studies for acute treatment of migraine: results from SAMURAI and SPARTAN. Cephalalgia. 2019;39:957–66. https://doi.org/10.1177/0333102419855080.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Al-Hassany L, MaassenVanDenBrink A. Drug interactions and risks associated with the use of triptans, ditans and monoclonal antibodies in migraine. Curr Opin Neurol. 2021;34:330–8. https://doi.org/10.1097/WCO.0000000000000932.

    Article  CAS  PubMed  Google Scholar 

  83. Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall D, Meier U, et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med. 2004;350:1104–10. https://doi.org/10.1056/NEJMoa030505.

    Article  CAS  PubMed  Google Scholar 

  84. Ho TW, Ferrari MD, Dodick DW, Galet V, Kost J, Fan X, et al. Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: a randomised, placebo-controlled, parallel-treatment trial. Lancet. 2008;372:2115–23. https://doi.org/10.1016/S0140-6736(08)61626-8.

    Article  CAS  PubMed  Google Scholar 

  85. Hewitt DJ, Aurora SK, Dodick DW, Goadsby PJ, Ge YJ, Bachman R, et al. Randomized controlled trial of the CGRP receptor antagonist MK-3207 in the acute treatment of migraine. Cephalalgia. 2011;31:712–22. https://doi.org/10.1177/0333102411398399.

    Article  PubMed  Google Scholar 

  86. Diener HC, Barbanti P, Dahlof C, Reuter U, Habeck J, Podhorna J. BI 44370 TA, an oral CGRP antagonist for the treatment of acute migraine attacks: results from a phase II study. Cephalalgia. 2011;31:573–84. https://doi.org/10.1177/0333102410388435.

    Article  PubMed  Google Scholar 

  87. Dodick DW, Lipton RB, Ailani J, Lu K, Finnegan M, Trugman JM, et al. Ubrogepant for the treatment of migraine. N Engl J Med. 2019;381:2230–41. https://doi.org/10.1056/NEJMoa1813049.

    Article  CAS  PubMed  Google Scholar 

  88. Dodick DW, Lipton RB, Ailani J, Halker Singh RB, Shewale AR, Zhao S, et al. Ubrogepant, an acute treatment for migraine, improved patient-reported functional disability and satisfaction in 2 single-attack phase 3 randomized trials, ACHIEVE I and II. Headache. 2020;60:686–700. https://doi.org/10.1111/head.13766.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Croop R, Goadsby PJ, Stock DA, Conway CM, Forshaw M, Stock EG, et al. Efficacy, safety, and tolerability of rimegepant orally disintegrating tablet for the acute treatment of migraine: a randomised, phase 3, double-blind, placebo-controlled trial. Lancet. 2019;394:737–45. https://doi.org/10.1016/S0140-6736(19)31606-X.

    Article  CAS  PubMed  Google Scholar 

  90. Rubio-Beltran E, Chan KY, Danser AJ, MaassenVanDenBrink A, Edvinsson L. Characterisation of the calcitonin gene-related peptide receptor antagonists ubrogepant and atogepant in human isolated coronary, cerebral and middle meningeal arteries. Cephalalgia. 2020;40:357–66. https://doi.org/10.1177/0333102419884943.

    Article  PubMed  Google Scholar 

  91. de Vries T, Al-Hassany L, MaassenVanDenBrink A. Evaluating rimegepant for the treatment of migraine. Expert Opin Pharmacother. 2021;22:973–9. https://doi.org/10.1080/14656566.2021.1895749.

    Article  CAS  PubMed  Google Scholar 

  92. Ltd BPCH. Biohaven achieves positive topline results in pivotal phase 2/3 study of vazegepant, the first and only intranasal CGRP receptor antagonist in clinical development for the acute treatment of migraine. 2019. https://www.prnewswire.com/news-releases/biohaven-achieves-positive-topline-results-in-pivotal-phase-23-study-of-vazegepant-the-first-and-only-intranasal-cgrp-receptor-antagonist-in-clinical-development-for-the-acute-treatment-of-migraine-300976000.html. Accessed 25 Oct 2021.

  93. Min KC, Kraft WK, Bondiskey P, Colon-Gonzalez F, Liu W, Xu J, et al. Atogepant is not associated with clinically meaningful alanine aminotransferase elevations in healthy adults. Clin Transl Sci. 2021;14:599–605. https://doi.org/10.1111/cts.12917.

    Article  CAS  PubMed  Google Scholar 

  94. Mulder IA, Li M, de Vries T, Qin T, Yanagisawa T, Sugimoto K, et al. Anti-migraine calcitonin gene-related peptide receptor antagonists worsen cerebral ischemic outcome in mice. Ann Neurol. 2020;88:771–84. https://doi.org/10.1002/ana.25831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Clemow DB, Johnson KW, Hochstetler HM, Ossipov MH, Hake AM, Blumenfeld AM. Lasmiditan mechanism of action - review of a selective 5-HT1F agonist. J Headache Pain. 2020;21:71. https://doi.org/10.1186/s10194-020-01132-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gonzalez-Hernandez A, Manrique-Maldonado G, Lozano-Cuenca J, Munoz-Islas E, Centurion D, Maassen VanDenBrink A, et al. The 5-HT(1) receptors inhibiting the rat vasodepressor sensory CGRPergic outflow: further involvement of 5-HT(1F), but not 5-HT(1A) or 5-HT(1D), subtypes. Eur J Pharmacol. 2011;659:233–43. https://doi.org/10.1016/j.ejphar.2011.03.035.

    Article  CAS  PubMed  Google Scholar 

  97. Ferrari MD, Farkkila M, Reuter U, Pilgrim A, Davis C, Krauss M, et al. Acute treatment of migraine with the selective 5-HT1F receptor agonist lasmiditan—a randomised proof-of-concept trial. Cephalalgia. 2010;30:1170–8. https://doi.org/10.1177/0333102410375512.

    Article  PubMed  Google Scholar 

  98. Pan KS, Siow A, Hay DL, Walker CS. Antagonism of CGRP signaling by rimegepant at two receptors. Front Pharmacol. 2020;11:1240. https://doi.org/10.3389/fphar.2020.01240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Garelja ML, Walker CS, Hay DL. CGRP receptor antagonists for migraine. Are they also AMY1 receptor antagonists? Br J Pharmacol. 2021; https://doi.org/10.1111/bph.15585.

  100. MaassenVanDenBrink A, Martelletti P. Monoclonal antibodies in headache: from bench to patient. 1st ed. Cham, Switzerland: Springer Nature; 2021. X, 172 p

    Book  Google Scholar 

  101. van Hoogstraten WS, MaassenVanDenBrink A. The need for new acutely acting antimigraine drugs: moving safely outside acute medication overuse. J Headache Pain. 2019;20:54. https://doi.org/10.1186/s10194-019-1007-y.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Saengjaroentham C, Strother LC, Dripps I, Sultan Jabir MR, Pradhan A, Goadsby PJ, et al. Differential medication overuse risk of novel anti-migraine therapeutics. Brain. 2020;143:2681–8. https://doi.org/10.1093/brain/awaa211.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoinette MaassenVanDenBrink .

Editor information

Editors and Affiliations

Ethics declarations

The authors were financially supported by the following research grants: (1) Consejo Nacional de Ciencia y TecnologĂ­a (Postdoctoral Grant No. 740678, Mexico) for E. Rivera-Mancilla; and (2) the Dutch Research Council (NWO, Vici Grant 09150181910040) for A. MaassenVanDenBrink.

Declaration of Interests

Antoinette MaassenVanDenBrink has received personal fees or honoraria for lectures and/or advisory boards from Abbvie/Allergan, Amgen/Novartis, Eli Lilly and Teva.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rivera-Mancilla, E., MaassenVanDenBrink, A. (2022). Novel Pharmacological Targets of Migraine: An Overview. In: Martelletti, P., Edvinsson, L. (eds) Novel Synthetic Drugs in Migraine. Headache. Springer, Cham. https://doi.org/10.1007/978-3-030-95334-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95334-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95333-1

  • Online ISBN: 978-3-030-95334-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics