Skip to main content

Advertisement

Log in

Relevance of nitric oxide for myocardial remodeling

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Endogenous myocardial nitric oxide (NO) may modulate the transition from adaptive to maladaptive remodeling leading to heart failure. In rodent models of pressure overload or myocardial infarction, the three NO synthase (NOS) isoforms were shown to play a neutral, protective, or even adverse role in myocardial remodeling, depending on the quantity of NO produced, the location of each NOS and their regulators, the prevailing oxidant stress and resultant NO/oxidant balance, as well as NOS coupling/dimerization. Beside neuronal NOS and—in specific conditions—inducible NOS isoforms, endothelial NOS (eNOS) exerts cardioprotective effects on pressure-overload, ischemia/reperfusion, and myocardial infarction-induced myocardial remodeling, provided the enzyme remains in a coupled state. Besides its effects on excitation-contraction coupling in response to stretch, eNOS acts as an ‘endogenous β-blocker’ by restoring the sympathovagal balance, opposing excessive hypertrophy as well as promoting vasodilatation and neoangiogenesis, thereby contributing to tissue repair. As eNOS was also shown to mediate the beneficial effects of cardiovascular drugs commonly used in patients with heart failure, strategies to increase its expression and/or coupled catalytic activity in the myocardium offer new therapeutic avenues for the treatment of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Pfeffer JM, Pfeffer MA, Braunwald E: Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 1985, 57:84–95.

    PubMed  CAS  Google Scholar 

  2. Morita H, Seidman J, Seidman CE: Genetic causes of human heart failure. J Clin Invest 2005, 115:518–526.

    PubMed  CAS  Google Scholar 

  3. McKinsey TA, Olson EN: Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest 2005, 115:538–546.

    PubMed  CAS  Google Scholar 

  4. Giordano FJ: Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 2005, 115:500–508.

    Article  PubMed  CAS  Google Scholar 

  5. Nian M, Lee P, Khaper N, et al.: Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 2004, 94:1543–1553.

    Article  PubMed  CAS  Google Scholar 

  6. Dorn GW, Force T: Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 2005, 115:527–537.

    PubMed  CAS  Google Scholar 

  7. Opie LH, Commerford PJ, Gersh BJ, et al.: Controversies in ventricular remodeling. Lancet 2006, 367:356–367.

    Article  PubMed  Google Scholar 

  8. Webb CS, Bonnema DD, Ahmed SH, et al.: Specific temporal profile of matrix metalloproteinase release occurs in patients after myocardial infarction: relation to left ventricular remodeling. Circulation 2006, 114:1020–1027.

    Article  PubMed  CAS  Google Scholar 

  9. Heymans S, Schroen B, Vermeersch P, et al.: Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation 2005, 112:1136–1144.

    Article  PubMed  CAS  Google Scholar 

  10. Yano M, Ikeda Y, Matsuzaki M: Altered intracellular Ca2+ handling in heart failure. J Clin Invest 2005, 115:556–564.

    PubMed  CAS  Google Scholar 

  11. Johar S, Cave AC, Narayanapanicker A, et al.: Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J 2006, 20:1546–1548.

    Article  PubMed  CAS  Google Scholar 

  12. Massion PB, Feron O, Dessy C, et al.: Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 2003, 93:388–398.

    Article  PubMed  CAS  Google Scholar 

  13. Schulz R, Rassaf T, Massion PB, et al.: Recent advances in the understanding of the role of nitric oxide in cardiovascular homeostasis. Pharmacol Ther 2005, 108:225–256.

    Article  PubMed  CAS  Google Scholar 

  14. Hare JM, Stamler JS: NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest 2005, 115:509–517.

    Article  PubMed  CAS  Google Scholar 

  15. Forstermann U, Munzel T: Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 2006, 113:1708–1714.

    Article  PubMed  Google Scholar 

  16. Landmesser U, Dikalov S, Price SR, et al.: Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 2003, 111:1201–1209.

    PubMed  CAS  Google Scholar 

  17. Balligand JL: Heat shock protein 90 in endothelial nitric oxide synthase signaling: following the lead(er)? Circ Res 2002, 90:838–841.

    Article  PubMed  CAS  Google Scholar 

  18. Kupatt C, Dessy C, Hinkel R, et al.: Heat shock protein 90 transfection reduces ischemia-reperfusion-induced myocardial dysfunction via reciprocal endothelial NO synthase serine 1177 phosphorylation and threonine 495 dephosphorylation. Arterioscler Thromb Vasc Biol 2004, 24:1435–1441.

    Article  PubMed  CAS  Google Scholar 

  19. Feron O, Dessy C, Desager JP, et al.: Hydroxy-methylglutaryl-coenzyme A reductase inhibition promotes endothelial nitric oxide synthase activation through a decrease in caveolin abundance. Circulation 2001, 103:113–118.

    PubMed  CAS  Google Scholar 

  20. Feron O, Balligand JL: Caveolins and the regulation of endothelial nitric oxide synthase in the heart. Cardiovasc Res 2006, 69:788–797.

    Article  PubMed  CAS  Google Scholar 

  21. Barouch LA, Harrison RW, Skaf MW, et al.: Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 2002, 416:337–339.

    PubMed  CAS  Google Scholar 

  22. Barouch LA, Cappola TP, Harrison RW, et al.: Combined loss of neuronal and endothelial nitric oxide synthase causes premature mortality and age-related hypertrophic cardiac remodeling in mice. J Mol Cell Cardiol 2003, 35:637–644.

    Article  PubMed  CAS  Google Scholar 

  23. Dawson D, Lygate CA, Zhang MH, et al.: nNOS gene deletion exacerbates pathological left ventricular remodeling and functional deterioration after myocardial infarction. Circulation 2005, 112:3729–3737.

    Article  PubMed  CAS  Google Scholar 

  24. Saraiva RM, Minhas KM, Raju SV, et al.: Deficiency of neuronal nitric oxide synthase increases mortality and cardiac remodeling after myocardial infarction: role of nitroso-redox equilibrium. Circulation 2005, 112:3415–3422.

    Article  PubMed  CAS  Google Scholar 

  25. Khan SA, Lee K, Minhas KM, et al.: Neuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of cardiac excitation-contraction coupling. Proc Natl Acad Sci U S A 2004, 101:15944–15948.

    Article  PubMed  CAS  Google Scholar 

  26. Damy T, Ratajczak P, Shah AM, et al.: Increased neuronal nitric oxide synthase-derived NO production in the failing human heart. Lancet 2004, 363:1365–1367.

    Article  PubMed  CAS  Google Scholar 

  27. Hataishi R, Rodrigues AC, Morgan JG, et al.: Nitric oxide synthase 2 and pressure-overload-induced left ventricular remodeling in mice. Exp Physiol 2006, 91:633–639.

    Article  PubMed  CAS  Google Scholar 

  28. Kobayashi N, Horinaka S, Mita S, et al.: Aminoguanidine inhibits mitogen-activated protein kinase and improves cardiac performance and cardiovascular remodeling in failing hearts of salt-sensitive hypertensive rats. J Hypertens 2002, 20:2475–2485.

    Article  PubMed  CAS  Google Scholar 

  29. Gealekman O, Abassi Z, Rubinstein I, et al.: Role of myocardial inducible nitric oxide synthase in contractile dysfunction and beta-adrenergic hyporesponsiveness in rats with experimental volume-overload heart failure. Circulation 2002, 105:236–243.

    Article  PubMed  CAS  Google Scholar 

  30. Feng Q, Lu X, Jones DL, et al.: Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation 2001, 104:700–704.

    Article  PubMed  CAS  Google Scholar 

  31. Sam F, Sawyer DB, Xie Z, et al.: Mice lacking inducible nitric oxide synthase have improved left ventricular contractile function and reduced apoptotic cell death late after myocardial infarction. Circ Res 2001, 89:351–356.

    Article  PubMed  CAS  Google Scholar 

  32. Liu YH, Carretero OA, Cingolani OH, et al.: Role of inducible nitric oxide synthase in cardiac function and remodeling in mice with heart failure due to myocardial infarction. Am J Physiol Heart Circ Physiol 2005, 289: H2616–H2623.

    Article  PubMed  CAS  Google Scholar 

  33. Jones SP, Greer JJ, Ware PD, et al.: Deficiency of iNOS does not attenuate severe congestive heart failure in mice. Am J Physiol Heart Circ Physiol 2005, 288: H365–H370.

    Article  PubMed  CAS  Google Scholar 

  34. Mungrue IN, Gros R, You X, et al.: Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. J Clin Invest 2002, 109:735–743.

    PubMed  CAS  Google Scholar 

  35. Heger J, Godecke A, Flogel U, et al.: Cardiac-specific overexpression of inducible nitric oxide synthase does not result in severe cardiac dysfunction. Circ Res 2002, 90:93–99.

    Article  PubMed  CAS  Google Scholar 

  36. Ziolo MT, Maier LS, Piacentino V 3rd, et al.: Myocyte nitric oxide synthase 2 contributes to blunted beta-adrenergic response in failing human hearts by decreasing Ca2+ transients. Circulation 2004, 109:1886–1891.

    Article  PubMed  CAS  Google Scholar 

  37. Li Q, Guo Y, Tan W, et al.: Gene therapy with iNOS provides long-term protection against myocardial infarction without adverse functional consequences. Am J Physiol Heart Circ Physiol 2006, 290:H584–H589.

    Article  PubMed  CAS  Google Scholar 

  38. Bolli R, Manchikalapudi S, Tang XL, et al.: The protective effect of late preconditioning against myocardial stunning in conscious rabbits is mediated by nitric oxide synthase. Evidence that nitric oxide acts both as a trigger and as a mediator of the late phase of ischemic preconditioning. Circ Res 1997, 81:1094–1107.

    PubMed  CAS  Google Scholar 

  39. Das A, Xi L, Kukreja RC: Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J Biol Chem 2005, 280:12944–12955.

    Article  PubMed  CAS  Google Scholar 

  40. Marfella R, Di Filippo C, Esposito K, et al.: Absence of inducible nitric oxide synthase reduces myocardial damage during ischemia reperfusion in streptozotocin-induced hyperglycemic mice. Diabetes 2004, 53:454–462.

    Article  PubMed  CAS  Google Scholar 

  41. Jones SP, Bolli R: The ubiquitous role of nitric oxide in cardioprotection. J Mol Cell Cardiol 2006, 40:16–23.

    Article  PubMed  CAS  Google Scholar 

  42. Calderone A, Thaik CM, Takahashi N, et al.: Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest 1998, 101:812–818.

    Article  PubMed  CAS  Google Scholar 

  43. Fiedler B, Lohmann SM, Smolenski A, et al.: Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes. Proc Natl Acad Sci U S A 2002, 99:11363–11368.

    Article  PubMed  CAS  Google Scholar 

  44. Pilz RB, Casteel DE: Regulation of gene expression by cyclic GMP. Circ Res 2003, 93:1034–1046.

    Article  PubMed  CAS  Google Scholar 

  45. Wollert KC, Drexler H: Regulation of cardiac remodeling by nitric oxide: focus on cardiac myocyte hypertrophy and apoptosis. Heart Fail Rev 2002, 7:317–325.

    Article  PubMed  CAS  Google Scholar 

  46. Massion PB, Balligand JL: Modulation of cardiac contraction, relaxation and rate by the endothelial nitric oxide synthase (eNOS): lessons from genetically modified mice. J Physiol 2003, 546:63–75.

    Article  PubMed  CAS  Google Scholar 

  47. Champion HC, Georgakopoulos D, Takimoto E, et al.: Modulation of in vivo cardiac function by myocyte-specific nitric oxide synthase-3. Circ Res 2004, 94:657–663.

    Article  PubMed  CAS  Google Scholar 

  48. Massion PB, Dessy C, Desjardins F, et al.: Cardiomyocyte-restricted overexpression of endothelial nitric oxide synthase (NOS3) attenuates beta-adrenergic stimulation and rein-forces vagal inhibition of cardiac contraction. Circulation 2004, 110:2666–2672.

    Article  PubMed  CAS  Google Scholar 

  49. Takimoto E, Champion HC, Belardi D, et al.: cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism. Circ Res 2005, 96:100–109.

    Article  PubMed  CAS  Google Scholar 

  50. Takimoto E, Champion HC, Li M, et al.: Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 2005, 11:214–222.

    Article  PubMed  CAS  Google Scholar 

  51. Petroff MG, Kim SH, Pepe S, et al.: Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol 2001, 3:867–873.

    Article  PubMed  CAS  Google Scholar 

  52. Brancaccio M, Fratta L, Notte A, et al.: Melusin, a muscle-specific integrin beta1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nat Med 2003, 9:68–75.

    Article  PubMed  CAS  Google Scholar 

  53. De Acetis M, Notte A, Accornero F, et al.: Cardiac overexpression of melusin protects from dilated cardiomyopathy due to long-standing pressure overload. Circ Res 2005, 96:1087–1094.

    Article  PubMed  Google Scholar 

  54. Fulton D, Gratton JP, McCabe TJ, et al.: Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 1999, 399:597–601. [Published erratum appears in Nature 1999, 400:792.]

    Article  PubMed  CAS  Google Scholar 

  55. Dimmeler S, Fleming I, Fisslthaler B, et al.: Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999, 399:601–605.

    Article  PubMed  CAS  Google Scholar 

  56. Massion PB, Pelat M, Belge C, et al.: Regulation of the mammalian heart function by nitric oxide. Comp Biochem Physiol A Mol Integr Physiol 2005, 142:144–150.

    Article  PubMed  Google Scholar 

  57. Cappola TP, Cope L, Cernetich A, et al.: Deficiency of different nitric oxide synthase isoforms activates divergent transcriptional programs in cardiac hypertrophy. Physiol Genomics 2003, 14:25–34.

    PubMed  CAS  Google Scholar 

  58. Ichinose F, Bloch KD, Wu JC, et al.: Pressure overload-induced LV hypertrophy and dysfunction in mice are exacerbated by congenital NOS3 deficiency. Am J Physiol Heart Circ Physiol 2004, 286:H1070–H1075.

    Article  PubMed  CAS  Google Scholar 

  59. Ruetten H, Dimmeler S, Gehring D, et al.: Concentric left ventricular remodeling in endothelial nitric oxide synthase knockout mice by chronic pressure overload. Cardiovasc Res 2005, 66:444–453.

    Article  PubMed  CAS  Google Scholar 

  60. Takimoto E, Champion HC, Li M, et al.: Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J Clin Invest 2005, 115:1221–1231.

    PubMed  CAS  Google Scholar 

  61. Bubikat A, De Windt LJ, Zetsche B, et al.: Local atrial natriuretic peptide signaling prevents hypertensive cardiac hypertrophy in endothelial nitric-oxide synthase-deficient mice. J Biol Chem 2005, 280:21594–21599.

    Article  PubMed  CAS  Google Scholar 

  62. Jones SP, Greer JJ, Kakkar AK, et al.: Endothelial nitric oxide synthase overexpression attenuates myocardial reperfusion injury. Am J Physiol Heart Circ Physiol 2004, 286:H276–H282.

    Article  PubMed  CAS  Google Scholar 

  63. Brunner F, Maier R, Andrew P, et al.: Attenuation of myocardial ischemia/reperfusion injury in mice with myocyte-specific overexpression of endothelial nitric oxide synthase. Cardiovasc Res 2003, 57:55–62.

    Article  PubMed  CAS  Google Scholar 

  64. Elrod JW, Greer JJ, Bryan NS, et al.: Cardiomyocyte-specific overexpression of NO synthase-3 protects against myocardial ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol 2006, 26:1517–1523.

    Article  PubMed  CAS  Google Scholar 

  65. Iwata A, Sai S, Nitta Y, et al.: Liposome-mediated gene transfection of endothelial nitric oxide synthase reduces endothelial activation and leukocyte infiltration in transplanted hearts. Circulation 2001, 103:2753–2759.

    PubMed  CAS  Google Scholar 

  66. Ueda K, Takano H, Hasegawa H, et al.: Granulocyte colony stimulating factor directly inhibits myocardial ischemia-reperfusion injury through Akt-endothelial NO synthase pathway. Arterioscler Thromb Vasc Biol 2006, 26:e108–e113.

    Article  PubMed  CAS  Google Scholar 

  67. Scherrer-Crosbie M, Ullrich R, Bloch KD, et al.: Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice. Circulation 2001, 104:1286–1291.

    Article  PubMed  CAS  Google Scholar 

  68. Liu YH, Xu J, Yang XP, et al.: Effect of ACE inhibitors and angiotensin II type 1 receptor antagonists on endothelial NO synthase knockout mice with heart failure. Hypertension 2002, 39:375–381.

    Article  PubMed  CAS  Google Scholar 

  69. Janssens S, Pokreisz P, Schoonjans L, et al.: Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circ Res 2004, 94:1256–1262.

    Article  PubMed  CAS  Google Scholar 

  70. Aicher A, Heeschen C, Mildner-Rihm C, et al.: Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 2003, 9:1370–1376.

    Article  PubMed  CAS  Google Scholar 

  71. Iwakura A, Shastry S, Luedemann C, et al.: Estradiol enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemia-induced neovascularization via endothelial nitric oxide synthase-mediated activation of matrix metalloproteinase-9. Circulation 2006, 113:1605–1614.

    Article  PubMed  CAS  Google Scholar 

  72. Landmesser U, Engberding N, Bahlmann FH, et al.: Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 2004, 110:1933–1939.

    Article  PubMed  CAS  Google Scholar 

  73. Morawietz H, Rohrdach S, Rueckschloss U, et al.: Increased cardiac endothelial nitric oxide synthase expression in patients taking angiotensin-converting enzyme inhibitor therapy. Eur J Clin Invest 2006, 36:705–712.

    Article  PubMed  CAS  Google Scholar 

  74. Mollnau H, Oelze M, August M, et al.: Mechanisms of increased vascular superoxide production in an experimental model of idiopathic dilated cardiomyopathy. Arterioscler Thromb Vasc Biol 2005, 25:2554–2559.

    Article  PubMed  CAS  Google Scholar 

  75. Liao Y, Asakura M, Takashima S, et al.: Celiprolol, a vasodilatory beta-blocker, inhibits pressure overload-induced cardiac hypertrophy and prevents the transition to heart failure via nitric oxide-dependent mechanisms in mice. Circulation 2004, 110:692–699.

    Article  PubMed  CAS  Google Scholar 

  76. Ignarro LJ, Napoli C, Loscalzo J: Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide: an overview. Circ Res 2002, 90:21–28.

    Article  PubMed  CAS  Google Scholar 

  77. Dessy C, Saliez J, Ghisdal P, et al.: Endothelial beta3-adrenoreceptors mediate nitric oxide-dependent vasorelaxation of coronary microvessels in response to the third-generation beta-blocker nebivolol. Circulation 2005, 112:1198–1205.

    Article  PubMed  CAS  Google Scholar 

  78. Oelze M, Daiber A, Brandes RP, et al.: Nebivolol inhibits superoxide formation by NADPH oxidase and endothelial dysfunction in angiotensin II-treated rats. Hypertension 2006, 48:677–684.

    Article  PubMed  CAS  Google Scholar 

  79. Mason RP, Kalinowski L, Jacob RF, et al.: Nebivolol reduces nitroxidative stress and restores nitric oxide bioavailability in endothelium of black Americans. Circulation 2005, 112:3795–3801.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Balligand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massion, P.B., Balligand, JL. Relevance of nitric oxide for myocardial remodeling. Curr Heart Fail Rep 4, 18–25 (2007). https://doi.org/10.1007/s11897-007-0021-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-007-0021-6

Keywords

Navigation