Skip to main content

Advertisement

Log in

Vascular Imaging in Diabetes

  • Vascular Biology (RS Rosenson, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Diabetes is a global epidemic affecting individuals of all socioeconomic backgrounds. Despite intensive efforts, morbidity and mortality secondary to the micro- and macrovascular complications remain unacceptably high. As a result, the use of imaging modalities to determine the underlying pathophysiology, early onset of complications, and disease progression has become an integral component of the management of such individuals. Echocardiography, stress echocardiography, and nuclear imaging have been the mainstay of noninvasive cardiovascular imaging tools to detect myocardial ischemia, but newer modalities such as cardiac MRI, cardiac CT, and PET imaging provide incremental information not available with standard imaging. While vascular imaging to detect cerebrovascular and peripheral arterial disease non-invasively has traditionally used ultrasound, CT- and MRI-based techniques are increasingly being employed. In this review, we will provide an outline of recent studies utilizing non-invasive imaging techniques to assist in disease diagnosis as well as monitoring disease progression. In addition, we will review the evidence for newer modalities such as MR spectroscopy, 3D intravascular ultrasound, and optical coherence tomography that provide exquisite detail of metabolic function and coronary anatomy not available with standard imaging, but that have not yet become mainstream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2 7 million participants. Lancet. 2011;378:31–40.

    Article  PubMed  CAS  Google Scholar 

  2. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94:311–21.

    Article  PubMed  Google Scholar 

  3. Yusuf S, Hawken S, Ôunpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:16–6.

    Article  Google Scholar 

  4. Maruthur NM. The growing prevalence of type 2 diabetes: Increased Incidence or Improved Survival? Curr Diabetes Rep. 2013;13:786–94.

    Article  CAS  Google Scholar 

  5. Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest. 1999;104:787–94.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Atkinson MA, Maclaren NK. The pathogenesis of insulin-dependent diabetes mellitus. N Engl J Med. 1994;331:1428–36.

    Article  PubMed  CAS  Google Scholar 

  7. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329:977–86.

    Article  Google Scholar 

  8. Gerstein HC, Riddle MC, Kendall DM, Cohen RM, Goland R, Feinglos MN, et al. Glycemia Treatment Strategies in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) Trial. Am J Cardiol. 2007;99:S34–43.

    Article  Google Scholar 

  9. Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339:229–34.

    Article  PubMed  CAS  Google Scholar 

  10. Bosevski M, Peovska I. Non-invasive imaging of diabetic vascular disease. Nucl Med Rev Cent East Eur. 2010;13:39–47.

    PubMed  Google Scholar 

  11. Belch JJF, Topol EJ, Agnelli G, Bertrand M, Califf RM, Clement DL, et al. Critical issues in peripheral arterial disease detection and management: a call to action. Arch Intern Med. 2003;163:884–92.

    Article  PubMed  Google Scholar 

  12. Wilson PWP. Diabetes mellitus and coronary heart disease. Am J Kidney Dis. 1998;32:S89–100.

    Article  PubMed  CAS  Google Scholar 

  13. Hage FG, Iskandrian AE. Cardiovascular imaging in diabetes mellitus. Nucl Cardiol. 2011;18:959–65.

    Article  Google Scholar 

  14. Wackers FJ, Young LH, Inzucchi SE, Chyun DA, Davey JA, Barrett EJ, et al. Detection of silent myocardial ischemia in asymptomatic diabetic subjects: the DIAD study. Diabetes Care. 2004;27:1954–61.

    Article  PubMed  Google Scholar 

  15. Kang X, Berman DS, Lewin H, Miranda R, Erel J, Friedman JD, et al. Comparative ability of myocardial perfusion single-photon emission computed tomography to detect coronary artery disease in patients with and without diabetes mellitus. Am Heart J. 1999;137:949–57.

    Article  PubMed  CAS  Google Scholar 

  16. Rajagopalan N, Miller TD, Hodge DO, Frye RL, Gibbons RJ. Identifying high-risk asymptomatic diabetic patients who are candidates for screening stress single-photon emission computed tomography imaging. J Am Coll Cardiol. 2005;45:43–9.

    Article  PubMed  Google Scholar 

  17. Giri S. Impact of Diabetes on the Risk Stratification Using Stress Single-Photon Emission Computed Tomography Myocardial Perfusion Imaging in Patients With Symptoms Suggestive of Coronary Artery Disease. Circulation. 2002;105:32–40.

    Article  PubMed  Google Scholar 

  18. Elhendy A, Van Domburg RT, Poldermans D, Bax JJ, Nierop PR, Geleijnse ML, et al. Safety and feasibility of dobutamine-atropine stress echocardiography for the diagnosis of coronary artery disease in diabetic patients unable to perform an exercise stress test. Diabetes Care. 1998;21:1797–802.

    Article  PubMed  CAS  Google Scholar 

  19. Fateh-Moghadam S, Reuter T, Htun P, Plöckinger U, Dietz R, Bocksch W. Stress echocardiography for risk stratification of asymptomatic patients with type 2 diabetes mellitus. Int J Cardiol. 2009;131:288–90.

    Article  PubMed  Google Scholar 

  20. From AM, Scott CG, Chen HH. The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction a population-based study. J Am Coll Cardiol. 2010;55:300–5.

    Article  PubMed  Google Scholar 

  21. Cortigiani L, Bigi R, Sicari R, Rigo F, Bovenzi F, Picano E. Comparison of Prognostic Value of Pharmacologic Stress Echocardiography in Chest Pain Patients With Versus Without Diabetes Mellitus and Positive Exercise Electrocardiography. Am J Cardiol. 2007;100:1744–9.

    Article  PubMed  Google Scholar 

  22. van der Sijde JN, Boiten HJ, Sozzi FB, Elhendy A, van Domburg RT, Schinkel AFL. Long-term prognostic value of dobutamine stress echocardiography in diabetic patients with limited exercise capability: a 13-year follow-up study. Diabetes Care. 2012;35:634–9. Demonstrates thewarrantyperiod of a normal dobutamine stress echo in diabetic patients.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012;379:453–60. Largest MRI study to date that evaluated suspected patients with CAD compared with SPECT imaging. Demonstrated the real work application of CMR for assessment of CAD and its potential superiority compared with SPECT imaging.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kwong RY, Sattar H, Wu H, Vorobiof G, Gandla V, Steel K, et al. Incidence and Prognostic Implication of Unrecognized Myocardial Scar Characterized by Cardiac Magnetic Resonance in Diabetic Patients Without Clinical Evidence of Myocardial Infarction. Circulation. 2008;118:1011–20.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Gerson MC, Caldwell JH, Ananthasubramaniam K, Clements IP, Henzlova MJ, Amanullah A, et al. Influence of Diabetes Mellitus on Prognostic Utility of Imaging of Myocardial Sympathetic Innervation in Heart Failure Patients. Circ Cardiovasc Imaging. 2011;4:87–93.

    Article  PubMed  Google Scholar 

  26. Patel NB, Balady GJ. Diagnostic and prognostic testing to evaluate coronary artery disease in patients with diabetes mellitus. Rev Endocr Metab Disord. 2010;11:11–20.

    Article  PubMed  Google Scholar 

  27. Young LH, Frans JTH, Chyun DA, Davey JA, Barrett EJ, Taillefer R, et al. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes. JAMA. 2009;301:1547–55.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Wackers FJT, Chyun DA, Young LH, Heller GV, Iskandrian AE, Davey JA, et al. Resolution of Asymptomatic Myocardial Ischemia in Patients With Type 2 Diabetes in the Detection of Ischemia in Asymptomatic Diabetics (DIAD) Study. Diabetes Care. 2007;30:2892–8.

    Article  PubMed  Google Scholar 

  29. Budoff MJ, Shaw LJ, Liu ST, Weinstein SR, Mosler TP, Tseng PH, et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol. 2007;49:1860–70.

    Article  PubMed  Google Scholar 

  30. Budoff MJ, Malpeso JM. Is coronary artery calcium the key to assessment of cardiovascular risk in asymptomatic adults? J Cardiovasc Comput Tomogr. 2011;5:12–5.

    Article  PubMed  Google Scholar 

  31. Raggi P, Shaw LJ, Berman DS, Callister TQ. Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol. 2004;43:1663–9.

    Article  PubMed  CAS  Google Scholar 

  32. Buyukterzi M, Turkvatan A, Buyukterzi Z. Frequency and extent of coronary atherosclerotic plaques in patients with a coronary artery calcium score of zero: assessment with CT angiography. Diagn Interv Radiol. 2013;19:111–8.

    PubMed  Google Scholar 

  33. Kamimura M, Moroi M, Isobe M, Hiroe M. Role of coronary CT angiography in asymptomatic patients with type 2 diabetes mellitus. Int Heart J. 2012;53:23–8.

    Article  PubMed  Google Scholar 

  34. Rana JS, Dunning A, Achenbach S, Al-Mallah M, Budoff MJ, Cademartiri F, et al. Differences in prevalence, extent, severity, and prognosis of coronary artery disease among patients with and without diabetes undergoing coronary computed tomography angiography: results from 10,110 individuals from the CONFIRM (COronary CT Angiography EvaluatioN For Clinical Outcomes): an InteRnational Multicenter Registry. Diabetes Care. 2012;35:1787–94.

    Article  PubMed Central  PubMed  Google Scholar 

  35. American Diabetes Association. Executive summary: Standards of medical care in diabetes--2012. Diabetes Care. 2012;35:S4–10. Summarizes the key recommendations for evaluation of the diabetic patient.

    Article  Google Scholar 

  36. Elhendy A, Arruda AM, Mahoney DW, Pellikka PA. Prognostic stratification of diabetic patients by exercise echocardiography. J Am Coll Cardiol. 2001;37:1551–7.

    Article  PubMed  CAS  Google Scholar 

  37. Yang HS, Pellikka PA, McCully RB, Oh JK, Kukuzke JA, Khandheria BK, et al. Role of biplane and biplane echocardiographically guided 3-dimensional echocardiography during dobutamine stress echocardiography. J Am Soc Echocardiogr. 2006;19:1136–43.

    Article  PubMed  Google Scholar 

  38. Elhendy A, O’Leary EL, Xie F, McGrain AC, Anderson JR, Porter TR. Comparative accuracy of real-time myocardial contrast perfusion imaging and wall motion analysis during dobutamine stress echocardiography for the diagnosis of coronary artery disease. J Am Coll Cardiol. 2004;44:2185–91.

    Article  PubMed  Google Scholar 

  39. Porter TR, Smith LM, Wu J, Thomas D, Haas JT, Mathers DH, et al. Patient outcome following 2 different stress imaging approaches: a prospective randomized comparison. J Am Coll Cardiol. 2013;61:2446–55. Demonstrates the superior performance of perfusion stress echo for the detection of CAD over conventional stress echocardiography.

    Article  PubMed  Google Scholar 

  40. Pellikka PA, Nagueh SF, Elhendy AA, Kuehl CA, Sawada SG. American Society of Echocardiography. American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr. 2007;20:1021–41.

    Article  PubMed  Google Scholar 

  41. Dick AJ, Wright GA, Connelly KA. The Impact of Diabetes on Myocardial Edema Post Acute Myocardial Infarction. Can J Cardiol. 2013;29:S136.

    Article  Google Scholar 

  42. Plein S, Radjenovic A, Ridgway JP, Barmby D, Greenwood JP, Ball SG, et al. Coronary Artery Disease: Myocardial Perfusion MR Imaging with Sensitivity Encoding versus Conventional Angiography. Radiology. 2005;235:423–30.

    Article  PubMed  Google Scholar 

  43. Di Carli MF, Hachamovitch R. New technology for noninvasive evaluation of coronary artery disease. Circulation. Am Heart Assoc. 2007;115:1464–80.

    Google Scholar 

  44. Nakai H, Takeuchi M, Nishikage T, Lang RM, Otsuji Y. Subclinical left ventricular dysfunction in asymptomatic diabetic patients assessed by two-dimensional speckle tracking echocardiography: correlation with diabetic duration. Eur J Echocardiogr. 2009;10:926–32.

    Article  PubMed  Google Scholar 

  45. Ng ACT, Auger D, Delgado V, van Elderen SGC, Bertini M, Siebelink H-M, et al. Association between diffuse myocardial fibrosis by cardiac magnetic resonance contrast-enhanced T1 mapping and subclinical myocardial dysfunction in diabetic patients: a pilot study. Circ Cardiovasc Imaging. 2012;5:51–9.

    Article  PubMed  Google Scholar 

  46. Johri AM, Chitty DW, Matangi M, Malik P, Mousavi P, Day A, et al. Can carotid bulb plaque assessment rule out significant coronary artery disease? A comparison of plaque quantification by two- and three-dimensional ultrasound. J Am Soc Echocardiogr. 2013;26:86–95.

    Article  PubMed  Google Scholar 

  47. Labbé SM, Grenier-Larouche T, Noll C, Phoenix S, Guérin B, Turcotte EE, et al. Increased myocardial uptake of dietary fatty acids linked to cardiac dysfunction in glucose-intolerant humans. Diabetes. 2012;61:2701–10.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Reith S, Battermann S, Hoffmann R, Marx N, Burgmaier M. Optical coherence tomography derived differences of plaque characteristics in coronary culprit lesions between type 2 diabetic patients with and without acute coronary syndrome. Catheter Cardiovasc Interv. 2013.

  49. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol Elsevier. 1972;30:595–602.

    Article  CAS  Google Scholar 

  50. Tillquist MN, Maddox TM. Update on Diabetic Cardiomyopathy: Inches Forward, Miles to Go. Curr Diab Rep. 2012;12:305–13.

    Article  PubMed  CAS  Google Scholar 

  51. Aneja A, Tang WH, Bansilal S, Garcia MJ, Farkouh ME. Diabetic Cardiomyopathy: Insights into Pathogenesis, Diagnostic Challenges, and Therapeutic Options. Am J Med. 2008;121:748–57.

    Article  PubMed  Google Scholar 

  52. Widya RL, van der Meer RW, Smit JWA, Rijzewijk LJ, Diamant M, Bax JJ, et al. Right ventricular involvement in diabetic cardiomyopathy. Diabetes Care. 2013;36:457–62.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Hage FG, Iskandrian AE. Cardiac Autonomic Denervation in Diabetes Mellitus. Circ Cardiovasc Imaging. 2011;4:79–81. Good summary of the available imaging techniques for evaluation of autonomic dysfunction in diabetic patients.

    Article  PubMed  Google Scholar 

  54. Sacre JW, Franjic B, Jellis CL, Jenkins C, Coombes JS, Marwick TH. Association of cardiac autonomic neuropathy with subclinical myocardial dysfunction in type 2 diabetes. JACC Cardiovasc Imaging. 2010;3:1207–15.

    Article  PubMed  Google Scholar 

  55. Pop-Busui R, Cleary PA, Braffett BH, Martin CL, Herman WH, Low PA, et al. Association between cardiovascular autonomic neuropathy and left ventricular dysfunction: DCCT/EDIC study (Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications). J Am Coll Cardiol. 2013;61:447–54.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Herrero P, Peterson LR, McGill JB, Matthew S, Lesniak D, Dence C, et al. Increased Myocardial Fatty Acid Metabolism in Patients With Type 1 Diabetes Mellitus. J Am Coll Cardiol. 2006;47:598–604.

    Article  PubMed  CAS  Google Scholar 

  57. Korosoglou G, Humpert PM, Ahrens J, Oikonomou D, Osman NF, Gitsioudis G, et al. Left ventricular diastolic function in type 2 diabetes mellitus is associated with myocardial triglyceride content but not with impaired myocardial perfusion reserve. J Magn Reson Imaging. 2012;35:804–11.

    Article  PubMed  Google Scholar 

  58. Peterson LR, Saeed IM, McGill JB, Herrero P, Schechtman KB, Gunawardena R, et al. Sex and type 2 diabetes: obesity-independent effects on left ventricular substrate metabolism and relaxation in humans. Obesity (Silver Spring). 2012;20:802–10.

    Article  CAS  Google Scholar 

  59. Healy DA, Boyle EM, Clarke Moloney M, Hodnett PA, Scanlon T, Grace PA, et al. Contrast-enhanced magnetic resonance angiography in diabetic patients with infra-genicular peripheral arterial disease: Systematic review. Int J Surg Elsevier Ltd. 2013;11:228–32.

    Article  CAS  Google Scholar 

  60. Pomposelli F. Arterial imaging in patients with lower extremity ischemia and diabetes mellitus. J Vasc Surg. 2010;52:81S–91.

    Article  PubMed  Google Scholar 

  61. Andersen CA. Noninvasive assessment of lower-extremity hemodynamics in individuals with diabetes mellitus. J Am Podiatr Med Assoc. 2010;100:406–11.

    Article  PubMed  Google Scholar 

  62. Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358:580–91.

    Article  PubMed  CAS  Google Scholar 

  63. Rosfors S, Eriksson M, Höglund N, Johansson G. Duplex ultrasound in patients with suspected aorto-iliac occlusive disease. Eur J Vasc Surg. 1993;7:513–7.

    Article  PubMed  CAS  Google Scholar 

  64. Flanigan DP, Ballard JL, Robinson D, Galliano M, Blecker G, Harward TRS. Duplex ultrasound of the superficial femoral artery is a better screening tool than ankle-brachial index to identify at risk patients with lower extremity atherosclerosis. J Vasc Surg. 2008;47:789–92. discussion792–3.

    Article  PubMed  Google Scholar 

  65. Collins R, Burch J, Cranny G, Aguiar-Ibanez R, Craig D, Wright K, et al. Duplex ultrasonography, magnetic resonance angiography, and computed tomography angiography for diagnosis and assessment of symptomatic, lower limb peripheral arterial disease: systematic review. BMJ. 2007;334:1257–7.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Fleischmann D, Hallett RL, Rubin GD. CT angiography of peripheral arterial disease. J Vasc Interv Radiol. 2006;17:3–26.

    Article  PubMed  Google Scholar 

  67. Miyazaki M, Takai H, Sugiura S, Wada H, Kuwahara R, Urata J. Peripheral MR Angiography: Separation of Arteries from Veins with Flow-spoiled Gradient Pulses in Electrocardiography-triggered Three-dimensional Half-Fourier Fast Spin-Echo Imaging. Radiology. 2003;227:890–6.

    Article  PubMed  Google Scholar 

  68. Foo TKF, Ho VB, Marcos HB, Hood MN, Choyke PL. MR angiography using steady-state free precession. Magn Reson Med. 2002;48:699–706.

    Article  PubMed  Google Scholar 

  69. Spuentrup E, Manning WJ, Bornert P, Kissinger KV, Botnar RM, Stuber M. Renal Arteries: Navigator-gated Balanced Fast Field-Echo Projection MR Angiography with Aortic Spin Labeling: Initial Experience. Radiology. 2002;225:589–96.

    Article  PubMed  Google Scholar 

  70. Davies JM, Bailey MA, Griffin KJ, Scott DJA. Pulse wave velocity and the non-invasive methods used to assess it: Complior, SphygmoCor. Arteriograph Vicorder Vasc. 2012;20:342–9.

    Google Scholar 

  71. Cruickshank K. Aortic Pulse-Wave Velocity and Its Relationship to Mortality in Diabetes and Glucose Intolerance: An Integrated Index of Vascular Function? Circulation. 2002;106:2085–90.

    Article  PubMed  Google Scholar 

  72. Laugesen E, Høyem P, Stausbøl-Grøn B, Mikkelsen A, Thrysøe S, Erlandsen M, et al. Carotid-femoral pulse wave velocity is associated with cerebral white matter lesions in type 2 diabetes. Diabetes Care. 2013;36:722–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Nambi V, Chambless L, Folsom AR, He M, Hu Y, Mosley T, et al. Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk: the ARIC (Atherosclerosis Risk In Communities) study. J Am Coll Cardiol. 2010;55:1600–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Inaba Y, Chen JA, Bergmann SR. Carotid plaque, compared with carotid intima-media thickness, more accurately predicts coronary artery disease events: a meta-analysis. Atherosclerosis. 2012;220:128–33.

    Article  PubMed  CAS  Google Scholar 

  75. Rider OJ, Tyler DJ. Clinical implications of cardiac hyperpolarized magnetic resonance imaging. J Cardiovasc Magn Reson. 2013;15:93.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Schroeder MA, Lau AZ, Chen AP, Gu Y, Nagendran J, Barry J, et al. Hyperpolarized (13)C magnetic resonance reveals early- and late-onset changes to in vivo pyruvate metabolism in the failing heart. Eur J Heart Fail. 2013;15:130–40.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Dangas GD, Maehara A, Evrard SM, Sartori S, Li JR, Chirumamilla AP, et al. Coronary artery calcification is inversely related to body morphology in patients with significant coronary artery disease: a three-dimensional intravascular ultrasound study. Eur Heart J Cardiovasc Imaging. 2013.

  78. Takayama T, Hiro T, Ueda Y, Honye J, Komatsu S, Yamaguchi O, et al. Plaque stabilization by intensive LDL-cholesterol lowering therapy with atorvastatin is delayed in type 2 diabetic patients with coronary artery disease-Serial angioscopic and intravascular ultrasound analysis. J Cardiol. 2013;61:381–6.

    Article  PubMed  Google Scholar 

  79. Fukunaga M, Fujii K, Nakata T, Shibuya M, Miki K, Kawasaki D, et al. Multiple complex coronary atherosclerosis in diabetic patients with acute myocardial infarction: a three-vessel optical coherence tomography study. EuroIntervention. 2012;8:955–61.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Kevin Levitt, Lucas Vivas, and Kim A. Connelly declare that they have no conflict of interest. Brian K. Courtney is a director, inventor, shareholder, and CEO of Colibri Technologies.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Connelly.

Additional information

This article is part of the Topical Collection on Vascular Biology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levitt, K., Vivas, L., Courtney, B. et al. Vascular Imaging in Diabetes. Curr Atheroscler Rep 16, 399 (2014). https://doi.org/10.1007/s11883-014-0399-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-014-0399-z

Keywords

Navigation