Skip to main content
Log in

Drug therapy for hypertriglyceridemia: Fibrates and omega-3 fatty acids

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

The reduction of low-density lipoprotein cholesterol in patients at risk for acute cardiovascular events is the cornerstone of lipid management in both the primary and secondary prevention settings. Serum triglyceride levels exceeding 150 mg/dL are abnormal and confer increased risk for developing coronary artery disease in both men and women. Serum triglycerides are derived from both dietary and endogenous biosynthetic pathways. Triglyceride metabolism has a complex regulatory circuitry and intimately impacts the production and disposal of multiple lipoprotein species. Hypertriglyceridemia is highly prevalent and is associated with multiple forms of dyslipidemia but tends to be undertreated. Therapeutic intervention with fibric acid derivatives and omega-3 fish oils is associated with significant reductions in both fasting and postprandial serum triglyceride concentrations. A variety of prospective, placebo-controlled clinical trials have also shown that these agents significantly impact risk for multiple cardiovascular end points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Assman G, Schulte H: Relation of high-density lipoprotein cholesterol and triglycerides to incidence of atherosclerotic coronary artery disease (the PROCAM Experience). Am J Cardiol 1992, 70:733–737.

    Article  Google Scholar 

  2. Assman G, Schulte H: The importance of triglycerides: results from the Prospective Cardiovascular Munster (PROCAM) Study. Eur J Epidemiol 1992, 8(Supp1):99–103.

    Article  Google Scholar 

  3. Manninen V, Tenkanen L, Koskinen P, et al.: Joint effects of serum triglycerides and LDL-cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study—implications for treatment. Circulation 1992, 85:37–45.

    PubMed  CAS  Google Scholar 

  4. Castelli W: The triglyceride issue: a view from Framingham. Am Heart J 1986, 112:432–437.

    Article  PubMed  CAS  Google Scholar 

  5. Miller M, Seidler A, Moalemi A, et al.: Normal triglyceride levels and coronary artery disease events: the Baltimore Coronary Observational Long-Term Study. J Am Coll Cardiol 1998, 31:1252–1257.

    Article  PubMed  CAS  Google Scholar 

  6. Tanko L, Bagger Y, Qin G, et al.: Enlarged waist combined with elevated triglycerides is a strong predictor of accelerated atherogenesis and related cardiovascular mortality in postmenopausal women. Circulation 2005, 111:1883–1890.

    Article  PubMed  CAS  Google Scholar 

  7. Asia Pacific Cohort Studies Collaboration: Serum triglycerides as a risk factor for cardiovascular diseases in the Asia-Pacific region. Circulation 2004, 110:2678–2686.

    Article  Google Scholar 

  8. Sharrett A, Ballantyne C, Coady M, et al.: Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), Apolipoprotein A-1 and B, and HDL density subfractions. Circulation 2001, 104:1108–1113.

    Article  PubMed  CAS  Google Scholar 

  9. Jonsdottir S, Sigfusson N, Gudnason V, et al.: Do lipids, blood pressure, diabetes and smoking confer equal risk of myocardial infarction in women as in men? The Reykjavik Study. J Cardiovasc Risk 2002, 9:67–76.

    Article  PubMed  Google Scholar 

  10. Day N, Oakes S, Luben R, et al.: EPIC-Norfolk study design and characteristics of the cohort: European Prospective Investigation of Cancer. Br J Cancer 1999, 80:95–103.

    PubMed  Google Scholar 

  11. Sarwar N, Danesh J, Eiriksdottir G, et al.: Triglycerides and the risk of coronary artery disease. 10158 incident cases among 262,525 participants in 29 western prospective studies. Circulation 2007, 115:450–458.

    Article  PubMed  CAS  Google Scholar 

  12. Hokanson JE, Austin MA: Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk 1996, 3:213–219.

    Article  PubMed  CAS  Google Scholar 

  13. Imke C, Rodriguez B, Grove J, et al.: Are remnant-like particles independent predictors of coronary heart disease incidence? The Honolulu Heart Study. Arterioscler Thromb Vasc Biol 2005, 25:1718–1722.

    Article  PubMed  CAS  Google Scholar 

  14. Nakajima K, Nakajima Y, Takeichi S, et al.: Plasma remnantlike lipoprotein particles or LDL-C as major pathologic factors in sudden cardiac death cases. Atherosclerosis 2008, 195:237–246.

    Article  Google Scholar 

  15. Bansaal S, Buring J, Rifai N, et al.: Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 2007, 298:309–316.

    Article  Google Scholar 

  16. Nordestgaard B, Benn M, Schnohr P, et al.: Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 2007, 298:299–308.

    Article  PubMed  CAS  Google Scholar 

  17. Tirosh A, Rudich A, Shochat T, et al.: Changes in triglyceride levels and risk for coronary heart disease in young men. Ann Intern Med 2007, 147:377–385.

    PubMed  Google Scholar 

  18. Criqui, M: Triglycerides and coronary heart disease revisited (again). Ann Intern Med 2007, 147:425–427.

    PubMed  Google Scholar 

  19. Chen HC, Farese RV: Inhibition of triglyceride synthesis as a treatment strategy for obesity. Arterioscler Thromb Vasc Biol 2005, 25:482–486.

    Article  PubMed  CAS  Google Scholar 

  20. Lefebvre P, Chinetti G, Fruchart JC, Staels B: Sorting out the roles of PPAR-alpha in energy metabolism and vascular homeostasis. J Clin Invest 2006, 116:571–580.

    Article  PubMed  CAS  Google Scholar 

  21. Ory DS: Nuclear receptor signaling in the control of cholesterol homeostasis: have the orphans found a home? Circ Res 2004, 95:660–670.

    Article  PubMed  CAS  Google Scholar 

  22. Brewer HB: Hypertriglyceridemia: changes in the plasma lipoproteins associated with an increased risk of cardiovascular disease. Am J Cardiol 1999, 83:3F–12F.

    Article  PubMed  CAS  Google Scholar 

  23. Ginsberg HN, Zhang YL, Hernandez-Ono A: Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res 36, 2005:232–240.

    Article  PubMed  CAS  Google Scholar 

  24. Brunzell, JD, Davidson M, Furberg CD, et al.: Lipoprotein management in patients with cardiometabolic risk. Diabetes CARE 2008, 31:811–822.

    Article  PubMed  CAS  Google Scholar 

  25. Claudel T, Staels B, Kuipers F: The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol 2005, 25:2020–2030.

    Article  PubMed  CAS  Google Scholar 

  26. Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 2002, 106:3143–3421.

  27. Dayspring T, Pokrywka G: Fibrate therapy in patients with metabolic syndrome and diabetes mellitus. Curr Atheroscler Rep 2006, 8:356–364.

    Article  PubMed  CAS  Google Scholar 

  28. Chapman JM: Fibrates in 2003: therapeutic action in atherogenic dyslipidaemia and future perspectives. Atherosclerosis 2003, 171:1–13.

    Article  PubMed  CAS  Google Scholar 

  29. Yoshida K: Proof of evidence: PPAR-induced ANGPTL4 in lipid and glucose metabolism. Biotechnol Mol Biol Rev 2007, 1:105–107.

    Google Scholar 

  30. Duplus E, Glorian M, Forest C: Fatty acid regulation of gene transcription. J Biol Chem 2000, 275:30749–30752.

    Article  PubMed  CAS  Google Scholar 

  31. Thomas J, Bramlett KS, Montrose C, et al.: A chemical switch regulates fibrate specificity for peroxisome proliferator-activated receptor α(PPAR α) versus liver X receptor. J Biol Chem 2003, 278:2403–2410.

    Article  PubMed  CAS  Google Scholar 

  32. Zhu D, Ganji SH, Kamanna VS, Kashyap ML: Effect of gemfibrozil on apolipoprotein B secretion and diacylglycerol acyltransferase activity in human hepatoblastoma (HepG2) cells. Atherosclerosis 2002, 164:221–228.

    Article  PubMed  CAS  Google Scholar 

  33. Vu-Dac N, Gervois P, Jakel H, et al.: Apolipoprotein A5, a crucial determinant of plasma triglyceride levels, is highly responsive to peroxisome proliferator-activated receptor alpha activators. J Biol Chem 2003, 278:17982–17985.

    Article  PubMed  CAS  Google Scholar 

  34. Lai CQ, Arnett DK, Corella D, et al.: Fenofibrate effect on triglyceride and postprandial response of apolipoprotein A5 variants: the GOLDN study. Arterioscler Thromb Vasc Biol 2007, 27:1417–1425.

    Article  PubMed  CAS  Google Scholar 

  35. Hertz R, Sheena V, Kalderon B, et al.: Suppression of hepatocyte nuclear factor-4alpha by acyl-CoA thioesters of hypolipidemic peroxisome proliferators. Biochem Pharmacol 2001, 61:1057–1062.

    Article  PubMed  CAS  Google Scholar 

  36. Otvos JD, Collins D, Freedman DS, et al.: Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Circulation 2006, 113:1556–1563.

    Article  PubMed  CAS  Google Scholar 

  37. Lambert G, Jarnoux AL, Pineau T, et al.: Fasting induces hyperlipidemia in mice overexpressing proprotein convertase subtilisin kexin type 9: lack of modulation of very-low-density lipoprotein hepatic output by the low-density lipoprotein receptor. Endocrinology 2006, 147:4985–4995.

    Article  PubMed  CAS  Google Scholar 

  38. Lambert G, Ancellin N, Charlton F, et al.: Plasma PCSK9 concentrations correlate with LDL and total cholesterol in diabetic patients and are decreased by fenofibrate treatment. Clin Chem 2008, 54:1038–1045.

    Article  PubMed  CAS  Google Scholar 

  39. Careskey HE, Davis RA, Alborn WE, et al.: Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9 (PCSK9). J Lipid Res 2008, 49:394–398.

    Article  PubMed  CAS  Google Scholar 

  40. Valasek MA, Clarke SL, Repa JJ: Fenofibrate reduces intestinal cholesterol absorption via PPARa-dependent modulation of NPC1L1 expression in mouse. J Lipid Res 2007, 48:2725–2735.

    Article  PubMed  CAS  Google Scholar 

  41. Jacobsen T: Role of n-3 fatty acids in the treatment of hypertriglyceridemia and cardiovascular disease. Am J Clin Nutr 2008, 87(Suppl):1981S–1990S.

    Google Scholar 

  42. Harris WS, Bulchandani D: Why do omega-3 FA lower TG? Curr Opin Lipidol 2006, 17:387–393.

    Article  PubMed  CAS  Google Scholar 

  43. Nakamura MT, Cheon Y, Li Y, Nara TY: Mechanisms of regulation of gene expression by fatty acids. Lipids 2004, 39:1077–1083.

    Article  PubMed  CAS  Google Scholar 

  44. Pegorier JP, Le May C, Girard J: Control of gene expression by fatty acids. J Nutr 2004, 134:2444S–2449S.

    PubMed  CAS  Google Scholar 

  45. Mater MK, Thelen AP, Pan DA, Jump DB: Sterol response element binding protein 1c (SREBP-1c) is involved in the polyunsaturated fatty acid suppression of hepatic S14 gene transcription. J Biol Chem 1999, 274:32725–3273.

    Article  PubMed  CAS  Google Scholar 

  46. Manninen V, Elo MO, Frick MH, et al.: Lipid alterations and the decline in incidence of coronary heart disease in the Helsinki Heart Study. JAMA 1988, 260:641–651.

    Article  PubMed  CAS  Google Scholar 

  47. Robins SJ, Collins D, Wittes JT, et al.; VA-HIT Study Group: Veterans Affairs High-Density Lipoprotein Intervention Trial. Relation of gemfibrozil treatment and lipid levels with major coronary events. JAMA 2001, 285:1586–1589.

    Article  Google Scholar 

  48. Rubins HB, Davenport J, Babikian V, et al.: Reduction in stroke with gemfibrozil in men with coronary heart disease and low HDL cholesterol. Circulation 2001, 103:2828–2833.

    CAS  Google Scholar 

  49. Rubins HB, Robins SJ, Collins D, et al.: Diabetes, plasma insulin, and cardiovascular disease. Arch Intern Med 2002, 162:2597–2604.

    Article  PubMed  CAS  Google Scholar 

  50. The BIP Study Group: Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease. The Bezafibrate Infarction Prevention Study. Circulation 2000, 102:21–27.

    Google Scholar 

  51. Keech A, Simes RJ, Barter P, et al.: Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 2005, 366:1849–1861.

    Article  PubMed  CAS  Google Scholar 

  52. Ericsson CG, Hamsten A, Nilsson J, et al.: Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Lancet 1996, 347:849–853.

    Article  PubMed  CAS  Google Scholar 

  53. Frick MH, Syvänne M, Nieminen MS, et al.: Prevention of the angiographic progression of coronary and vein-graft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol. Circulation 1997, 96:2137–2143.

    PubMed  CAS  Google Scholar 

  54. Karpe F, Taskinen MR, Nieminen MS, et al.: Remnant-like lipoprotein particle cholesterol concentration and progression of coronary and vein-graft atherosclerosis in response to gemfibrozil treatment. Atherosclerosis 2001, 21:181–187.

    Article  Google Scholar 

  55. Diabetes Atherosclerosis Intervention Study Investigators: Effect of fenofibrate on progression of coronary artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study: a randomised study. Lancet 2001, 357:905–910.

    Article  Google Scholar 

  56. Prueksaritanont T, Zhao JJ, Ma B, et al.: Mechanistic studies on metabolic interactions between gemfibrozil and statins. J Pharmacol Exp Ther 2002, 301:1042–1051.

    Article  PubMed  CAS  Google Scholar 

  57. Kris-Etherton PM, Harris WS, Appel LJ, et al.; for the Nutrition Committee: AHA scientific statement. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002, 106:2747–2757.

    Article  PubMed  Google Scholar 

  58. Albert CM, Campos H, Stampfer MJ, et al.: Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N Engl J Med 2002, 346:1113–1118.

    Article  PubMed  CAS  Google Scholar 

  59. GISSI-Prevenzione Investigators: Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet 1999, 354:447–455.

    Article  Google Scholar 

  60. Yokoyama M, Origasa H, Matsuzaki M, et al.; for the Japan EPA Lipid Intervention Study (JELIS) Investigators: Effects of eicosapentaenoic acid on major coronary events in hypercholesterolemic patients (JELIS): a randomized open-label, blinded endpoint analysis. Lancet 2007, 369:1090–1098.

    Article  PubMed  CAS  Google Scholar 

  61. Miller M, Cannon C, Murphy S, et al.; for the PROVE ITTIMI 22 Investigators: Impact of triglyceride levels beyond low-density lipoprotein cholesterol after acute coronary syndrome in the PROVE IT-TIMI 22 Trial. J Am Coll Cardiol 2008, 51:724–730.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter P. Toth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toth, P.P., Dayspring, T.D. & Pokrywka, G.S. Drug therapy for hypertriglyceridemia: Fibrates and omega-3 fatty acids. Curr Atheroscler Rep 11, 71–79 (2009). https://doi.org/10.1007/s11883-009-0012-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-009-0012-z

Keywords

Navigation