Skip to main content
Log in

A356 Reinforced with Nanoparticles: Numerical Analysis of Mechanical Properties

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Commercial casting Al-Si (A356)-based composites reinforced with different volume fractions of alumina (Al2O3) nanoparticulates (average particle size 50 nm) were synthesized in this study. Particle distribution, hardness, and tensile properties in the as-cast condition were experimentally investigated. The A356 alloy composite showed an increase in hardness, elastic modulus, and tensile strength compared with monolithic alloys. Finally, a combination of an artificial neural network and the finite element method (FEM) was implemented to predict the microstructure and mechanical properties including grain size, length of silicon rods, amount of porosity, hardness, tensile yield stress, ultimate tensile stress, and elongation percentage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.O. Shabani and A. Mazahery, Appl. Math. Model. 35, 5707 (2011).

    Article  Google Scholar 

  2. Y.T. Zhao, S.L. Zhang, G. Chen, X.N. Cheng, and C.Q. Wang, Compos. Sci. Technol. 68, 1463 (2008).

    Article  Google Scholar 

  3. S.F. Hassan and M. Gupta, Metall. Mater. Trans. 36A, 2253 (2005).

    Article  Google Scholar 

  4. P. Davami and N. Varahram, Kovove Mater. 49, 253 (2011).

    Google Scholar 

  5. J.R. Groza, Int. J. Powder Metall. 35, 59 (1999).

    Google Scholar 

  6. M.O. Shabani and A. Mazahery, J. Mater. Sci. 46, 6700 (2011).

    Article  Google Scholar 

  7. J. Lan, Y. Yang, and X. Li, Mater. Sci. Eng. A 386, 284 (2004).

    Google Scholar 

  8. J. Lan, Y. Yang, and X. Li, Mater. Sci. Eng. A 380, 378 (2004).

    Article  Google Scholar 

  9. Y.C. Kang and S.L.I. Chen, Chem. Phys. 85, 438 (2004).

    Google Scholar 

  10. E.M. Maik, O. Beort, S. Kleiner, and U. Vogt, Compos. Sci. Technol. 679, 2377 (2007).

    Google Scholar 

  11. N. Altinkok and R. Koker, Mater. Des. 25, 595 (2004).

    Article  Google Scholar 

  12. A.M. Hassan, A. Alrashdan, M.T. Hayajneh, and A.T. Mayyas, J. Mater. Process. Technol. 209, 894 (2009).

    Article  Google Scholar 

  13. M. Ostad Shabani and A. Mazahery, Int. J. Appl. Math. Mech. 7, 89 (2011).

    MATH  Google Scholar 

  14. S.K. Singh, K. Mahesh, and A.K. Gupta, Mater. Des. 31, 2288 (2010).

    Article  Google Scholar 

  15. P.J. Lisboa and A.F.G. Taktak, Neural Netw. 19, 408 (2006).

    Article  MATH  Google Scholar 

  16. A. Mazahery and M. Ostadshabani, J. Compos. Mater. 45, 2579 (2011).

    Article  Google Scholar 

  17. A.M. Rashidi, A.R. Eivani, and A. Amadeh, Comput. Mater. Sci. 45, 499 (2009).

    Article  Google Scholar 

  18. R. Hwang, Y. Chen, and H. Huang, Expert Syst. Appl. 37, 3136 (2010).

    Article  Google Scholar 

  19. S.H.M. Anijdan, A. Bahrami, H.R.M. Hosseini, and A. Shafyei, Mater. Des. 27, 605 (2006).

    Article  Google Scholar 

  20. L. Fratini, G. Buffa, and D. Palmeri, Comput. Struct. 87, 1166 (2009).

    Article  Google Scholar 

  21. M.O. Shabani and A. Mazahery, JOM 63, 132 (2011).

    Article  Google Scholar 

  22. N.S. Reddy, A.K. Prasada Rao, M. Chakraborty, and B.S. Murty, Mater. Sci. Eng. A 391, 131 (2005).

    Article  Google Scholar 

  23. M. Habibnejad-Korayem, R. Mahmudi, and W.J. Poole, Mater. Sci. Eng. A 519, 198 (2009).

    Article  Google Scholar 

  24. M. Zamzam, D. Ros, and J. Grosch, Key Eng. Mater. 79–80, 235 (1993).

    Article  Google Scholar 

  25. A. Mazahery and M.O. Shabani, Russ. Metall. 7, 699 (2011).

    Article  Google Scholar 

  26. W. Zhou and Z.M. Xu, J. Mater. Process. Technol. 63, 358 (1997).

    Article  Google Scholar 

  27. M.O. Shabani and A. Mazahery, Synth. Met. 161, 1226 (2011).

    Article  Google Scholar 

  28. A. Mazahery and M.O. Shabani, Powder Technol. 217, 558 (2012).

    Article  Google Scholar 

  29. S.F. Hassan and M. Gupta, J. Mater. Sci. 41, 2229 (2006).

    Article  Google Scholar 

  30. S.F. Hassan and M. Gupta, Mater. Sci. Eng. A 392, 163 (2005).

    Article  Google Scholar 

  31. R.G. Reddy, Rev. Adv. Mater. Sci. 5, 121 (2003).

    Google Scholar 

  32. K.M. Mussert, W.P. Vellinga, A. Bakker, and S. Van Der Zwaag, J. Mater. Sci. 37, 789 (2002).

    Article  Google Scholar 

  33. K. Akio, O. Atsushi, K. Toshiro, and T. Hiroyuki, J. Jpn. Inst. Light Met. 49, 149 (1999).

    Article  Google Scholar 

  34. M.C. Watson and T.W. Cline, Acta Metall. Mater. 40, 135–140 (1992).

    Google Scholar 

  35. K.R. Suresh, H.B. Niranjan, P.M. Jebaraj, and M.P. Chowdiah, 14th International Conference on Wear of Materials, August–September 2003, p. 638.

  36. H. Abdizadeh and H.R. Baharvandi, Mater. Sci. Eng. A 518, 61 (2009).

    Article  Google Scholar 

  37. S.Y. Chang and A. Kamio, Metall. Mater. Int. 4, 39 (1998).

    Google Scholar 

  38. M.O. Shabani, A. Mazahery, M.R. Rahimipour, and M. Razavi, J. King Saud Univ. Eng. Sci. (2011). doi:10.1016/j.jksues.2011.05.001

  39. D.P. Mondal, N.V. Ganesh, and V.S. Muneshwar, Mater. Sci. Eng. A 433, 18 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Ostad Shabani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazahery, A., Shabani, M.O. A356 Reinforced with Nanoparticles: Numerical Analysis of Mechanical Properties. JOM 64, 323–329 (2012). https://doi.org/10.1007/s11837-012-0245-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0245-0

Keywords

Navigation