Skip to main content

Advertisement

Log in

Atomic layer deposition of TiO2 thin films on nanoporous alumina templates: Medical applications

  • Thin Films and Interfaces
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of a nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Neither the 20 nm nor the 100 nm TiO2-coated nanoporous alumina membranes exhibited statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for “smart” drug delivery devices, orthopedic implants, or self-sterilizing medical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.V. Salata, J. Nanobiotechnology, 2 (2004), p. 3.

    Article  PubMed  Google Scholar 

  2. G. Stylios et al., Injury, 36 (2005), pp. S6–S13.

    Article  PubMed  Google Scholar 

  3. N. Wisniewski et al., Colloids and Surfaces B: Biointerfaces, 18 (2000), pp. 197–219.

    Article  CAS  Google Scholar 

  4. S.H.C. Anderson et al., Physica Status Solidi A: Applied Research, 197 (2003), pp. 331–335.

    Article  ADS  CAS  Google Scholar 

  5. L.T. Canham et al., Thin Solid Films, 297 (1997), pp. 304–307.

    Article  ADS  CAS  Google Scholar 

  6. M.P. Stewart et al., Advanced Materials, 12 (2000), pp. 859–869.

    Article  CAS  Google Scholar 

  7. H. Matsuda et al., Science, 268 (1995), pp. 1466–1468.

    Article  ADS  Google Scholar 

  8. M.L. Hegde et al., J. Molecular Neuroscience, 22 (2003), pp. 19–31.

    Article  CAS  Google Scholar 

  9. M.A. Cameron et al., Langmuir, 16 (2000), pp. 7435–7444.

    Article  CAS  Google Scholar 

  10. V. Faust et al., Key Engineering Materials, 206 (2002), pp. 1547–1550.

    Article  Google Scholar 

  11. A. Canabarro et al., J. Biomedical Materials Research, 87A (2008), pp. 588–597.

    Article  CAS  Google Scholar 

  12. B.D. Ratner, J. Biomedical Materials Research, 27 (1993), pp. 837–850.

    Article  CAS  Google Scholar 

  13. D. Stoeckel et al., European Radiology, 14 (2004), pp. 292–301.

    Article  PubMed  Google Scholar 

  14. A. Canabarro et al., J. Biomedical Materials Research, 87A (2008), pp. 588–597.

    Article  CAS  Google Scholar 

  15. S. Kipke et al., Advanced Functional Materials, 14 (2004), pp. 1184–1188.

    Article  CAS  Google Scholar 

  16. R.L. Puurunen et al., J. Applied Physics, 96 (2004), pp. 7686–7695.

    Article  ADS  CAS  Google Scholar 

  17. H.M. Alsyouri et al., Langmuir, 19 (2003), pp. 7307–7314.

    Article  CAS  Google Scholar 

  18. T. Mosmann, J. Immunological Methods, 65 (1983), pp. 55–63.

    Article  CAS  Google Scholar 

  19. N.A. Monteiro-Riviere et al., Carbon, 44 (2006), pp. 1070–1078.

    Article  CAS  Google Scholar 

  20. N.A. Monteiro-Riviere et al., Toxicology and Applied Pharmacology, 234 (2009), pp. 222–235.

    Article  PubMed  CAS  Google Scholar 

  21. M.S. Wong et al., Applied and Environmental Microbiology, 72 (2006), pp. 6111–6116.

    Article  PubMed  CAS  Google Scholar 

  22. P.C. Maness et al., Applied and Environmental Microbiology, 65 (1999), pp. 4094–4098.

    PubMed  CAS  Google Scholar 

  23. D. Losic et al., Nanotechnology, 19 (2008), p. 24570.

    Article  Google Scholar 

  24. Y.Z. Yang et al., Vacuum, 83 (2008), pp. 569–574.

    Article  CAS  Google Scholar 

  25. S.R. Chae et al., J. Membrane Science, 329 (2009), pp. 68–74.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. Narayan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayan, R.J., Monteiro-Riviere, N.A., Brigmon, R.L. et al. Atomic layer deposition of TiO2 thin films on nanoporous alumina templates: Medical applications. JOM 61, 12–16 (2009). https://doi.org/10.1007/s11837-009-0081-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0081-z

Keywords

Navigation